×

耶鲁大学公开课博弈论笔记,读书笔记:《博弈论》(三)之智猪博弈

admin admin 发表于2024-01-04 14:23:06 浏览9 评论0

抢沙发发表评论

本文目录一览:

《博弈论》读书笔记

??20世纪20年代末期,约翰·冯·诺依曼正式证明了博弈的基础原理,在此基础上宣告博弈论诞生,因此,冯·诺依曼被称为“博弈论之父”。
??再到20世纪40年代中期,一本跨越时代的巨著《博弈论与经济行为》问世,作者正是冯·诺依曼和摩根斯坦。
??这两位卓越的数学家经过不断研究,最终将最初的二人博弈理论推广到了n人博弈理论,还将博弈论成功应用到经济领域,他们奠定了博弈论的基础和理论体系。

??提起博弈论,便需要说起“孤独的天才”——约翰·纳什,他是博弈论的天才。约翰·纳什在20世纪中期正式发表了一篇论文——《n人博弈的均衡点》,对博弈论起到了良好的推动作用。

??《博弈圣经》最大的优点是它能够将原有的博弈理论正式应用到现实中,还能帮助普通大众通过自身的学习和研究成为博弈的真正高手。
??它将博弈论应用到政治、经济、文化等多个领域,对于个人的生活和发展也能起到促进和推动作用。

??简单来说,博弈的基本构成要素分为(7个):

??所谓决策人,指的是在博弈的赛局中率先做出选择的一方,决策人往往会根据自己的经验、自身在对局中的感受、自身的状态等,率先做出一种具有方向性的选择。

以时间顺序为基准来分,分为:

《博弈论》读书笔记

这是我看的关于博弈论的第一本书。之前一直以为这样的书很深奥,但看完此书后发现,这类书应该列为必读书之列,因为了解博弈论,会让自己更明智,能在面临选择的时候做出更优化的决策。

这本书给我打开了一扇新的窗户,让我了解了一些经典的博弈理论,比如囚徒困境、博傻理论、智猪博弈、哈丁公用地悲剧、纳什均衡、帕累托优势、胆小鬼博弈,相继博弈与同时博弈等等。“智猪博弈”解释了为什么占有更多资源者必须承担更多的义务。胆小鬼博弈表明了将自己的意图传达给竞争对手的重要性。在胆小鬼博弈中,如果对手知道你的策略。而且这项策略比较强硬,那么你就会成为赢家。因此,在胆小鬼博弈中有一件事很重要,就是千万不要阻止对手来打探你的行动。如果你隐瞒,就表明了你并没有进入的决心。纳什均衡是指在一个策略组合中,所有的参与者面临这样的情况:给定你的策略,我的策略是我最好的策略;给定我的策略,你的策略也是最好的策略。即双方在对方给定的策略下不愿意调整自己的策略。博弈的结果可以达到均衡,也可以不均衡。博弈的均衡是稳定状态,因而是可以预测的。有些博弈的均衡点不止一个,比如夫妻博弈中就有两个纳什均衡点。不是所有的博弈都存在纯策略纳什均衡点,但至少存在一个混合策略均衡点。纳什均衡是一种非合作均衡。

非合作博弈的过程,感觉博弈的双方是在下棋。每做的一个策略都是对对方策略的反应。相继博弈过程中,博弈双方是在一个来回一个来回地下棋,而在同时博弈过程中,博弈双方需要一次性下多步棋,最后得出一个结论,比如《时代》和《纽约时报》的选题。

同时,本书也有很多有趣的博弈案例,比如警察与小偷的博弈、夫妻博弈、不虞现象、柠檬市场,等等。通过这些案例会让我们联想到生活中的许多类似的情景。还有,本书也提出了面临生活中的博弈,我们应该怎么处理?比如面临“冤冤相报”的困境如何破解?人际交往中如何博弈?在爱情中的两人如何博弈?怎样才能找到理想的伴侣?怎样在相亲中有效地利用单独评价与比较评价的优势?采用什么方法才能分好粥?军事战争中攻守双方如何博弈?怎样的威胁才适度?怎样的惩罚才有效果?在冤冤相报过程中,博弈双方如果每次能在报复时减少10%,则有助于问题的解决。在恋人之间的博弈中,胜利总是属于那些善意的、宽容的、强硬的、简单明了的恋人们。相亲中的比较策略比较有意思,如果你是个女孩子,要准备去相亲。如果你长得漂亮而你的朋友很丑,那就带她一起去,这样可以反衬你的美;如果你们两个都很漂亮,那你就应该选择一个人去;如果你们两个都很丑,应该一起去,因为如果你一个人去的话,他会将你和他日常见过的女孩子比较;如果你们都很丑,假设你有一个很明显的丑陋的标志(如胎记,显性特征),而你有知识和谈吐方面的优势(隐性特征),就应该让室友同去。自己一个人去的话,可能会一眼对你的形象大打折扣。反过来,如果室友知识渊博而有明显胎记,你就应该自己去。这个策略可被用于求职、产品促销等方面。

有一个博弈的例子让我感触良多,就是“待宰的猴群”。每天主人打开笼子的时候,每只猴子都不敢有任何举动,以免引起主人的注意而被杀掉,当主人选中其中一只猴子的时候,别的猴子幸灾乐祸,但最终,所有的猴子都被杀掉。这让我想起了南京大屠杀,为什么那么少的士兵能杀那么多的老百姓,而没有人起来反抗?公共汽车上的窃贼与乘客也是这样的例子。

还有一些烧脑的博弈例子,如三个快抢手的对决、强盗分钻石。懂得博弈论后,我们会知道并不是实力最强的人赢的机会最大。还有一些关于概率论的例子,给我感觉比较深的是,关于概率,不能相信感觉。概率论也是需要好好掌握的理论。

分粥游戏也很有意思,各方博弈的结果最终会形成一个制度。一个7人小团体共同生活,怎样进行分粥呢?第一种方法是指定一个大家信得过的品德高尚的人分粥,一开始还比较公平,后来就开始偏向溜须拍马和亲戚,风气也越来越坏。第二种方法是大家轮流主持分粥,一周每人分一天,结果每人每周只有一天能吃饱。第三种方法是成立一个分粥委员会和一个监督委员会,对分粥进行监督和制约,这种方法可以公平分粥,但效率太低,每次分完粥都凉了。第四种方法是每人轮流值日分粥,但分粥的人要最后一个领粥,这个制度保证了么七个碗里的粥一样多。这个博弈达成共识的过程最终形成了一个制度。一个制度是否有效,要看它是否找到了整体目标与个体目标的纳什均衡。

书中还提到一个精彩的案例,美国小公司哈勒尔如何打败保洁公司推出的”新奇“清洁喷液的。”新奇“清洁喷液的推出给哈勒尔带了巨大的恐慌,他随即采取了三个步骤:第一步,宝洁在丹佛试销产品时,哈勒尔选择悄悄从丹佛撤出了自己的所有产品,方法是中止在丹佛的所有广告和促销,停止供货,使宝洁的试销“感觉良好”。第二步,在宝洁大面积上市“新奇”产品时,哈勒尔以原来50%的价格倾销,使宝洁遭遇伏击,哈勒尔还开始广告攻势“销售期有限”,使消费者在很短时间内购买了可以用半年的哈勒尔产品。之后,新奇再采用降价策略已经不管用了,消费者在半年之内已经不可能再买了。于是,“新奇”遭遇严重滞销,宝洁认为这是错误产品,中止了生产销售计划。

本书还谈到最佳策略的选择。最佳策略就是能够给你最大成功机会的策略。在我们面对选择时,决策的核心并不在于结果的最优,而是决策过程的最优化,只要策略合理,结果当然就不会差。每个策略都可能会产生不虞现象,需要仔细考虑。了解博弈论,做个理性的决策者,提升自己的决策能力。

(2020.7.29)

博弈论读书笔记

博弈论 (Game Theory),也称对策论或竞赛论 。是指研究多个个体或团队之间在特定条件制约下在对局中利用相关方的策略,而实施对应策略的学科。 它是应用数学的一个分支,既是现代数学的一个新分支,也是运筹学的一个重要学科。目前在生物学、经济学、国际关系学、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
具有竞争或对抗性质的行为成为博弈行为。在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。比如日常生活中的下棋,打牌等。博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。
1)根据参与者之间是否具有一个具有约束力的协议,博弈可分为合作博弈和非合作博弈。
有:合作博弈(合作中如何分配利益问题,使协议框架内所有参与者都满意)。 没有:非合作博弈(如何争取自己最大化利益,不考虑其它参与者利益)。
2)根据参与者选择的策略,做出决定的先后顺序,博弈可分为静态博弈和动态博弈。
静态博弈:参与人同时选择策略或者虽非同时选择,但后做出决策的行动者并不知道先行动者采取了什么策略。 动态博弈: 参与人的行动有先后顺序,且后行动者能够观察到先行动者采取策略的前提下制定自己的策略。
3)根据对其它参与者的信息掌握程度,博弈可分为完全信息博弈和不完全信息博弈 。
完全信息博弈:每一位参与人对其他参与人的特征、策略空间及收益函数(也叫支付)有准确的信息。 不完全信息博弈:每一位参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息。
一场博弈包含4个基本要素:
1.至少两人参加 2.参与者间的利益(博弈的目的) 3.策略(行动方案) 4.信息(制定策略的依据)
警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检控对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。若二人都保持沉默(相关术语称互相“合作”),则二人同样判监1年。若二人都互相检举举,则二人同样判监8年。
博弈分析:
囚徒困境 假定每个参与者(即“囚徒”)都是利己的,即都寻求最大自身利益,而不关心另一参与者的利益。这场博弈的纳什均衡,显然不是顾及团体利益的帕累托最优解决方案。以全体利益而言,如果两个参与者合作保持沉默,两人都只会被判刑1年,总体利益更高,结果也比两人背叛对方、判刑8年的情况较佳。但根据以上假设,二人均为理性的个人,且只追求自己个人利益。均衡状况会是两个囚徒都选择背叛,结果二人判决均比合作要高,总体利益较合作低。这就是“困境”所在。例子漂亮地证明了:非零和博弈中,帕累托最优和纳什均衡是相冲突的。
假设猪圈里有两头猪,一头大猪,一头小猪。 猪圈很长,一头有一踏板,另一头是饲料的出口和食槽。猪每踩一下踏板,另一边就会有相当于10份的猪食进槽,但是踩踏板以后跑到食槽所需要付出的“劳动”,加起来要消耗相当于2份的猪食。踏板和食槽分置笼子的两端,如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
博弈分析:
如果两只猪同时踩踏板,同时跑向食槽,大猪吃进7份,得益5份,小猪吃进3份,实得1份;如果大猪踩踏板后跑向食槽,这时小猪抢先,吃进4份,实得4份,大猪吃进6份,付出2份,得益4份;如果大猪等待,小猪踩踏板,大猪先吃,吃进9份,得益9份,小猪吃进1份,但是付出了2份,实得-1份;如果双方都懒得动,所得都是0。
利益分配格局决定两头猪的理性选择:小猪踩踏板只能吃到一份,不踩踏板反而能吃上4份。对小猪而言,无论大猪是否踩动踏板,小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边,这是最好的选择。
启发:
(商战)大企业与小企业:小企业(小猪)将行业老大(大猪)的实力转化为自己的助力。 (股市)大户与散户:大户设局形成猪圈,引小户(小猪)入套....。 (奖惩)企业与员工:杜绝智猪博弈(搭便车现象),(移动食物槽位并减少食物投放)。 (董事会)大股东与小股东:大股东为企业的盈利亏损负责,小股东不负责监管直接拿分红。
总结: 无论是商业中的"抱大腿",还是人生奋斗历程中的搭"搭便车"都是一种策略,一次机会。只要我们以一种平实的心态就能以这种快捷的方式获得成功。
源自启蒙思想家卢梭的著作《论人类不平等的起源和基础》
古代的村庄有两个猎人。当地的猎物主要有两种:鹿和兔子。如果一个猎人单兵优作战,一天最多只能打到4只兔子。只有两个一起去才能猎获一只鹿。从填饱肚子的角度来说,4只兔子能保证一个人4天不挨饿,而一只鹿却能让两个人吃上10天。
博弈分析:
两个人的行为决策可以形成两个博弈结局:分别打兔子,每人得4;合作,每人得10。这样猎鹿博弈有两个纳什均衡点,那就是:要么分别打兔子,每人吃饱4天;要么合作,每人吃饱10天。
猎鹿博弈反应的是:合作带来的最大利益。
该模型可以简单概括为:实力越强死得越快。最能体现这个博弈的:赤壁之战。
甲乙丙三个枪手准备决斗。甲枪法最好,80%命中率。乙枪法次之,60%命中率。丙枪法最差,40%命中率。假设他们了解彼此实力,也能做出理性判断。问题一:如果三人同时开枪,并且每人只发一枪。第一轮枪战后,谁活下来的机会大?问题二:如果三人轮流开枪,并且由枪法最差的丙先开枪,他该怎么做?
博弈分析:
问题一:同时开枪
甲的最佳策略:先瞄准乙。因为乙对甲的威胁要比丙大,所以应该首先干掉乙,再干掉丙小菜一碟。
乙的最佳策略:先瞄准甲。一旦将甲干掉了,和丙进行对决,乙胜算的概率要大得多。
丙的最佳策略:也是先瞄准甲。毕竟对丙来说,乙的威胁还是比甲要小一些,先努力干掉甲再想如何面对乙,这是丙的正常思路。
在这种情况下,我们计算一下三个枪手开枪后各自存活的概率:
甲存活概率:40%X60%=24%。 乙存货概率:20% 丙存货概率:100%
问题二:轮流开枪
甲先开枪:必定把枪口对准乙,
乙先开枪:和第一种情况一致,丙的存活率依然最高。
丙先开枪:根据情况适当调整策略,随便开一空抢,接下来由甲开枪,甲会对乙开枪,丙的存活率仍然最高。向甲开枪时一种冒险的行为,因为万一杀死了甲,乙就会向丙开枪,此时丙的存活率为40%。
在现实中,会有信息不对称的情况。比如如果枪手甲伪装自己,让乙和丙认为他的枪法最差:这时,幸存者是甲的概率就会大幅上升。在现实中, 能力很强的人要学会韬光养晦 ,往往能成为最后的胜利者。 能力差的人在竞争中耍弄手腕能赢一时,但往往不能最终成事;提升自己实力会在最后的对决中起到关键作用。 无论是一次性博弈还是相继出招的序惯博弈,博弈者都要努力寻找自己最有力的策略。
如果自身没有优势策略,那就站在对方的角度上进行分析,确定对方的最优策略。得到的最终结果都不会超过最优势策略得到的结果,可大胆放心使用。
如果身处复杂的博弈当中,一时间无法确定自己的最佳策略,就先选择把自己的劣势策略排除,来简化博弈情况。
在一个小镇上,只有一名警察负责巡逻,保卫小镇的人生和财产安全。小镇分A,B两区,A区一酒馆,B区一仓库,镇上还仅住着一名小偷,他的目标时A区酒馆或者B区仓库。因为只有一名警察,每次只能选择A区或B区一个区域区巡逻,而小偷正是看到这一点,每次也到一个区域区偷窃。假设A区有2万元财产,B区有1万元财产。警察区A区巡逻,小偷去B区,则B区1万元财产归小偷;如果警察去B区巡逻,小偷也去A区,则被逮捕。警察去B区巡逻,小偷去A区,则2A区2万元财产归小偷,;如果警察去B区巡逻,小偷也去B区,则同样被逮捕。那警察采取那种方式巡逻,镇上的财产损失最少?
分析:
警察抽签的方式(2个A区签,1个B区签),去A区巡逻的概率2/3,去B去巡逻的概率1/3。 小偷抽签的方式(2个A区签,1个B区签),抽到A区签去B区巡逻,抽到B区签去A区巡逻。
试想有两只好斗的公鸡狭路相逢,每只鸡有两个行动选择:一是退下来,一是进攻。如果一方退下来,而对方没有退下来,对方获得胜利;如果对方也退下来,双方则打个平手;如果自己没退下来,而对方退下来,自己则胜利,对方则失败;如果两只鸡都前进,那么则两败俱伤。因此,对两只鸡来说,最好的结果是,对方退下来,而自己不退。
这个博弈有两个纯策略纳什均衡:一方前进,另一方后退;或一方后退,另一方前进。但关键是谁进谁退?当然,该博弈也存在一个混合策略均衡,即大家随机的选择前进或后退。不过相对而言,我们更关注于纯策略均衡。一博弈,如果有惟一的纳什均衡点,那么这个博弈是可预测的,即这个纳什均衡点就是事先知道的惟一的博弈结果。但是如果一博弈有多个纳什均衡,则要预测结果就必须附加另外的有关博弈的细节信息。比如,这里谁进谁退,可能就需要附加额外的细节信息才能做出判断。
斗鸡博弈强调的是,如何在博弈中采用妥协的方式取得利益。如果双方都换位思考,它们可以就补偿进行谈判,最后造成以补偿换退让的协议,问题就解决了。博弈中经常有妥协,双方能换位思考就可以较容易地达成协议。考虑自己得到多少补偿才愿意退,并用自己的想法来理解对方。只从自己立场出发考虑问题,不愿退,又不想给对方一定的补偿,僵局就难以打破。
协和谬误即某件事情在投入了一定成本、进行到一定程度而后发现不宜继续下去,却苦于各种原因而将错就错,欲罢不能。
当你进行了一项不理性的行动后,应该忘记已经发生的行为和你支付的成本,只要考虑这项活动之后需要耗费的精力和能够带来的好处,再综合评定它能否给自己带来正效用。比如进行投资时,把目光投向前方,审时度势,如果发现这项投资并不能赢利,应该及早停掉,不要惋惜已投下去的各项成本:精力、时间、金钱……
5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。 这是一个高度简化和抽象的模型,体现了博弈的思想。 假定“每人海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”
博弈分析:
推理过程采用倒推的方式:
从后向前推,在只剩4号和5号的话,4号的方案一定是100,0,此时即使5号反对结果也无法反对。
在只剩3号4号和5号的话,根据5号之前的处境,3号会提出99,0,1的方案,该方案3号一定同意,4号肯定不同意,但5号一定回头赞成票。如果5号投了反对票,就会回到只剩4号和5号的情况。
在2号3号4号和5号共存的情况下,2号最好的分配方案是98,0,0,2,既笼络5号,放弃3号4号,2号和5号投赞成票,3号4号投反对票,方案半数人同意而通过。
那1至5号都在的情况下,假如1号海盗被扔进大海,由2号海盗来分配方案的话,3号和4号海盗什么也得不到,因此1号海盗的分配方案就会从处于劣势的3号和4号海盗入手,最优方案是98,0,1,1,0,这样1号3号4号投赞成票,2和5号投反对票,方案通过。
模型任意改变一个假设条件,最终结果都会不一样。
海盗分金是一个高度简化和抽象的模型,体现了博弈的思想。在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。企业中的一把手,在进行内部人员控制时,经常是抛开二号人物,而与会计和出纳们打得火热,就是因为公司里的小人物好收买。 1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。这不正是全球化过程中先进国家的先发优势吗?而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利,却因不得不看别人脸色行事而只能分得一小杯羹。
一旦人们做了某种选择,就好比走上了一条不归之路,惯性的力量会使这一选择不断自我强化,并让你不能轻易走出去。
美国经济学家道格拉斯·诺思是第一个提出制度的“路径依赖”理论的学者,他认为,路径依赖类似于物理学中的“惯性”,一旦进入某一路径(无论是“好”的还是“坏”的)就可能对这种路径产生依赖。某一路径的既定方向会在以后发展中得到自我强化。人们过去做出的选择决定了他们现在及未来可能的选择。好的路径会对企业起到正反馈的作用,通过惯性和冲力,产生飞轮效应,企业发展因而进入良性循环;不好的路径会对企业起到负反馈的作用,就如厄运循环,企业可能会被锁定在某种无效率的状态下而导致停滞。而这些选择一旦进入锁定状态,想要脱身就会变得十分困难。
在现实生活中,路径依赖现象无处不在。一个著名的例子是:现代铁路两条铁轨之间的标准距离是四英尺又八点五英寸,为什么采用这个标准呢?原来,早期的铁路是由建电车的人所设计的,而四英尺又八点五英寸正是电车所用的轮距标准。那么,电车的标准又是从哪里来的呢?最先造电车的人以前是造马车的,所以电车的标准是沿用马车的轮距标准。马车又为什么要用这个轮距标准呢?因为古罗马人军队战车的宽度就是四英尺又八点五英寸。罗马人为什么以四英尺又八点五英寸为战车的轮距宽度呢?原因很简单,这是牵引一辆战车的两匹马屁股的宽度。
有趣的是,美国航天飞机燃料箱的两旁有两个火箭推进器,因为这些推进器造好之后要用火车运送,路上又要通过一些隧道,而这些隧道的宽度只比火车轨道宽一点,因此火箭助推器的宽度由铁轨的宽度所决定。所以,今天世界上最先进的运输系统的设计,在两千年前便由两匹马的屁股宽度决定了!
纳什均衡,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什均衡。一个策略组合被称为纳什均衡,当每个博弈者的均衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。
纳什均衡的重要影响:
1.改变了经济学的体系和结构。
2.扩展了经济学研究经济问题的范围。
3.加强了经济学研究的深度。
4.形成了基于经典博弈的研究范式体系。
5.扩大和加强了经济学与其他社会科学、自然科学的联系。
帕累托最优(Pareto Optimality),也称为帕累托效率、帕累托改善,是博弈论中的重要概念,并且在经济学, 工程学和社会科学中有着广泛的应用。
帕累托最优是指资源分配的一种理想状态,假定固有的一群人和可分配的资源,从一种分配状态到另一种状态的变化中,在没有使任何人境况变坏的前提下,使得至少一个人变得更好,这就是帕累托改进或帕累托最优化。帕累托最优的状态就是不可能在有更过的帕累托改进的余地;换句话说,帕累托改进是达到帕累托最优的路径和方法。帕累托最优是公平与效率的“理想王国”。
一般来说,达到帕累托最优时,会同时满足以下3个条件:
如果一个经济体不是帕累托最优,则存在一些人可以在不使其他人的境况变坏的情况下使自己的境况变好的情形。普遍认为这样低效的产出的情况是需要避免的,因此帕累托最优是评价一个经济体和政治方针的非常重要的标准。
夏普利值指所得与自己的贡献相等,是一种分配方式。核心是付出和收益成正比。
考虑这样一个联盟博弈。有这样一个三人财产分配问题。假定财产为100万元,假定这100万元在三个人之间进行分配。A拥有50%的票力,b拥有40%的票力,c拥有10%的票力。规则规定,当超过50%的票认可了某种方案时,才能获得整个财产,否则三人将一无所获。
我们看到,任何单独一个人的票力都不超过50%,从而不能单独决定财产的分配。要超过50%的票力必须要形成联盟。也就是说,在这个例子中任何人的权利都不是“决定性的”,也没有一个人是“无权利的”或权利为0.
此时财产应当按票力分配吗?如果是的话,即a、b、c的财产分配为:50%,40%,10%。但如果这样分配的话,c可以提出这样的方案,a:70%,b:0,c:30%。这个方案能被a、c接受,因为对a、c来说这是一个比按票力分配有明显改进的方案,尽管b被排除出去,但是a、c的票力构成大多数(60%)。
在这样的情况下,b会向a提出这样一个方案,a:80%,b20%,c:0。此时a和b所得均比刚才c提出的方案要好,但c成了一无所有,但a、b票力综合构成多数(90%)……这样的过程可以一直进行下去。
在这个过程中,理性的人会形成联盟ab、ac或abc。但哪个联盟能够形成呢?最终的分配结果应该是怎样的呢?
夏普里值是这样的一个值:在各种可能的联盟次序下,参与者对联盟的边际贡献之和除以各种可能的联盟组合。在财产分配问题上,我们可以写出各种可能的联盟顺序。而边际贡献就在于在这个顺序中谁是这个联盟的“关键加入者”。如果是关键加入者,那么他的边际贡献就为100万元。下表:财产问题中各种排列下的关键加入者:
由上表,我们得到abc的夏普里值分别为: A=4/6,b=1/6,c=1/6
从这个例子可以看到,票力是虚假的实力表示。b、c票里不同,但是夏普里值相同,即权利相同,他们在形成获胜联盟中作为关键加入者的课程性是一样的。
公共资源悲剧最初由哈定提出。哈定举了这样一个具体事例:一群牧民面对向他们开放的草地,每一个牧民都想多养一头牛,因为多养一头牛增加的收益大于其购养成本,是合算的,尽管因平均草量下降,可能使整个牧区的牛的单位收益下降。每个牧民都可能多增加一头牛,草地将可能被过度放牧,从而不能满足牛的食量,致使所有牧民的牛均饿死。这就是公共资源的悲剧。
“公地悲剧”展现的是一幅私人利用免费午餐时的狼狈景象——无休止地掠夺。“悲剧”的意义就在于此。根据哈丁的讨论,结合我们对挣扎在生活磨难中的人们的理解,“公地悲剧”的发生机理似乎可以这样来理解:勤劳的人为个人的生计而算计,在一番忽视远期利益的计算后,开始为眼前利益而“杀鸡取卵”,没有规则,没有产权制度,没有强制,最后,导致公共财产——那个人们赖依生存的摇篮的崩溃,公地悲剧”的更准确的提法是:无节制的、开放式的、资源利用的灾难。
应对之策:
1、明确和稳定产权。 2、配合企业制度改革,力争做到公共产品私人供给。 3、加强制度建设,重视委托、代理、搭便车、机会主义问题研究。
在二人零和博弈中,参与者的利益严格相反(一人所得等于另一人所失),每个参与者都会尽最大努力使对手的最大收益最小化,而他的对手则正好相反,他们努力使自己的最小收益最大化。
假定一只鳄鱼咬住你的脚,如果你用手去试图挣脱你的脚,鳄鱼便会同时咬住你的脚与手。你愈挣扎,就被咬住得越多。所以,万一鳄鱼咬住你的脚,你唯一的机会就是牺牲一只脚。
给人的启示:当发现自己的行动已经离既定方向越来越远时,果断做出选择,停止行动,不要有一丝侥幸心理。
是指人们天生有一种办事有始有终的驱动力,人们之所以会忘记已完成的工作,是因为欲完成的动机已经得到满足;如果工作尚未完成,这同一动机便使他对此留下深刻印象。 一般来说,工作难度越大,思维越活跃,短时间强化的强度就越高,而强化对增强记忆是有益的。因此,被中止的工作往往容易被首先回忆。此外,工作难度大时,人们的情绪变化也大,而情绪对回忆是有很大的帮助。
避免措施:
第一,在看事物的时候运用自己的价值观标准,如果发现一个工作计划不值得做,那么就勇敢地放弃。 第二,编制一个时间表,把必须做的事以及要费的时间都写下来。努力培养出一种较合实际的意识,把期限定在要求办妥的时间以前。如果有笔帐必须在12月1日缴付,那就预订在11月25日付出。 第三,一点一滴地强化意志力,我们可以先从一件小事来训练自己,比如强迫自己在洗碗槽里留下几只碟子不洗,看一本书的时候,尝试停一下,想想自己是否在浪费时间和精力,如果是的,要不要继续看下去? 第四,从现在开始:做任何事情,不要想着我还有时间去做,等待片刻;这样子会让大脑产生一定的滞后性,会让自己产生懒惰的行文;因此,想到就去实现,做是一切成功的前提; 第五,练习是一件好事,但是切勿目标盲目; 第六,制定一个准确的截止日期;针对每一项工作任务,预测可能需要的时间,根据时间结点来评估自己的任务完成计划; 第七,细分每一步工作计划:对于一项工作任务,不要盲目的去做,前提是仔细思考,细化每一个任务步骤,结合每一步任务所需要的条件即可
马太效应(Matthew Effect),是指好的愈好,坏的愈坏,多的愈多,少的愈少的一种现象。即两极分化现象。来自于圣经《新约?马太福音》中的一则寓言。
1968年,美国科学史研究者罗伯特·莫顿(Robert K. Merton)提出这个术语用以概括一种社会心理现象:“相对于那些不知名的研究者,声名显赫的科学家通常得到更多的声望即使他们的成就是相似的,同样地,在同一个项目上,声誉通常给予那些已经出名的研究者,例如,一个奖项几乎总是授予最资深的研究者,即使所有工作都是一个研究生完成的。”
此术语后为经济学界所借用,反映贫者愈贫,富者愈富,赢家通吃的经济学中收入分配不公的现象。
个体在群体的压力下,在认知,判断,信念和行为等方面,自愿与全体中的多数保持一致。既个体行为总是以全体行为为参照。
产生的原因主要为:1.寻求行为准则;2.避免孤独感;3.群体凝聚力
????????

读书笔记:《博弈论》(三)之智猪博弈

?故事的原型:

猪圈里有两头猪,一头大猪,一头小猪,且在一个食槽里进食。猪主人在猪圈有个奇葩的设计,食槽在猪圈的东边,而在猪圈的西边有个按钮,只有按下西边的按钮,才会有少量食物掉到东边的食槽。如果有一只猪去按按钮,另一只猪就有机会抢先吃到另一边落下的食物。当小猪去按按钮时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪去按按钮,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。

如此一来,会出现4种情况:

(1)大猪去按按钮:大猪和小猪各吃一半的食物。

(2)小猪去按按钮:大猪吃掉全部的食物,小猪没得吃。

(3)大猪小猪都去按按钮:还是大猪吃掉全部的食物,小猪没得吃。

(4)大猪小猪都不去按按钮:两只猪都没食物吃。

那么,两只猪各会采取什么策略?

很显然, “小猪搭便车、大猪辛苦奔波” 是这种博弈模式最为理性也是最合理的解决方式。也就是小猪舒舒服服地等在食槽边,而大猪则为一点残羹不知疲倦地奔忙于按钮和食槽之间。

原因何在?

因为,无论是大猪还是小猪,等着别人去按按钮都是最好的选择,但是如果两者都这么做的话,也就只有一起挨饿的份了。小猪按按钮将一无所获,不按按钮反而能吃上食物。对小猪而言,无论大猪是否按按钮,不按按钮总是好的选择。反观大猪,已明知小猪是不会去按按钮的,自己亲自去按按钮总比不按强吧,所以只好亲力亲为了。



带来的思考:

“智猪博弈”告诉我们:

1. 在 既定规则下 ,有时占优势的一方最终得到的结果却有悖于他的初始理性。

有一种现象,在大酒店和大宾馆的周围有很多小酒店和小旅馆聚集,这又是一个典型的小猪搭便车模式,大公司-大猪,有实力大广告吸引客户和人流,这是小公司小酒店不可能复制的营销策略,那么靠在大公司旁边自然可以利用别人吸引来的客流和人流。

为什么农家乐聚集在名胜风景区旁边?也是这个道理。

2. 谁先去 按 这个 按钮 ,就会造福全体,但多劳却并不一定多得。

在现实生活中,很多人都只想付出最小的代价,得到最大的回报,争着做那只坐享其成的小猪。“一个和尚挑水喝,两个和尚抬水喝,三个和尚没水喝”说的正是这样一个道理。这三个和尚都想做“小猪”,却不想付出劳动,不愿承担起“大猪”的义务,最后导致每个人都无法获得利益。

在办公室政治中,有一个常用语叫做:“鞭打快牛”和“能者多劳”,确实存在越能干越辛苦的现象。当大家都形成统一的认识,一个人比较能干后,大家都会选举他做劳模,知道一个人比较懒时,都会说他懈怠敷衍。但是劳模偶尔没有完成任务就会被数落,但是经常懈怠的人每次都完不成任务反而别人不会再说他。“你是先进、你是优秀,你怎么可以落下工作呢?”。

3.幸福是靠奋斗出来的,但必须有公平正义的规则保障。

这句话来自于川报集团余总的一本书里,用在此处是恰当的。在“智猪博弈”的情景中,大猪是占据比较优势的,但是,由于小猪别无选择,使得大猪为了自己能吃到食物,不得不辛勤忙碌,反而让小猪搭了便车,而且比大猪还得意。这个博弈中的关键要素是猪圈的设计,?即按按钮的成本。当然,猪主人发现这种情况后,也会想办法改进(这也是一种博弈):

方法一:食槽和按钮的位置不变,增加食物的投入量 。把食物投放量增加一倍,不论大猪还是小猪去按按钮,都能跑回来吃饱。

方法二:缩短按钮与食槽的距离,减少食物投放量。 使得谁按按钮就能吃到食物、而且刚好把食物吃完。

方法三:缩短按钮与食槽的距离,食物投放量不变。 无论是大猪还是小猪按按钮,吃到的食物都会增加,食物量相对更为充足。

如果,你是猪主人,你会选择哪个改进方法了?欢迎留言。



俗话说“家家有本难念的经”,在生活中,“大猪”有“大猪”的难处,“小猪”有“小猪”的难处。尽管“大猪”“小猪”只要了解自身处境,采取相应的策略就会成功,然而理性是有限的,确定的成功总是很难获得。

读书笔记:《博弈论》(七)之文化人都需要懂一点博弈论

对博弈论的研习始于大学时期,十余年来,虽有间断但从未终止,最近以阅读《博弈论》(在我读过的博弈论书籍中,它不算写的最好的,但较为通俗,观点基本正确)为契机,简短的记录下了我对博弈论的一些通俗认知和思考。

我认为,生活的美好需要你我都学一点博弈论,博弈论是一门深奥的学问,更是一种思维方式,当然,博弈论也有它的局限性,要求博弈论能够完全刻画真实的世界,注定是徒劳无功。



1.文化人都需要懂一点博弈论



保罗·萨缪尔森曾说过,“要想在现代社会做一个有文化的人,你必须对博弈论有一个大致了解”。

事实上,不论是否了解博弈论,在波云诡谲的商业竞争局中、在风云变色的政治角力场里,各自发力的个体与个体、群体与群体甚至个体与群体,无一不在相互博弈。

每一个博弈都是你中有我、我中有你的情形。不同的博弈参与者,可以选择不同的行动,但由于相互作用,一个博弈参与者的利益不仅取决于自己采取的行动,也取决于其他博弈参与者所采取的行动。

博弈论的精髓在于基于这种策略性相互依赖基础上的理性换位思考,即在选择你的行动时,还是考虑你的得益,但是你应当用他人的得益去推测他人的行动,从而选择最有利于自己的行动。

也就是说,博弈论其实是关于有理性且利益关联的各方在竞争性活动中制定最优策略的理论,是一种有关“互动行为”的科学。



2.博弈论是一门深奥的学问



博弈论问世不久就得到了学术界的热情肯定。当时有人预言:“我们的子孙将把这看作是20世纪上半叶最重要的科学成就之一。”目前,博弈论被广泛应用于经济学、政治学、生物进化学、军事战略问题以及计算机科学等领域。

简单的博弈案例看上去似乎有趣,但博弈论始终是一门深奥复杂的学问,是研究具有斗争或竞争性质现象的理论和方法,它是应用数学的一个分支,既是现代数学的一个新分支,也是运筹学的一个重要学科。

博弈论偏重方法论研究,局中人地位平等,没有明确的设计主体,注重定量模型化分析,研究的目的是求得博弈问题的纳什均衡解。

博弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样,都是从复杂的现象中抽象出基本的元素,对这些元素构成的数学模型进行分析,而后逐步引入对其形势产生影响的其他因素,从而分析其结果。因此它被称为“社会科学的数学”。

尽管如此,博弈论仍然改变了世界,成为人类理性认识世界的一个重要工具。而纳什均衡的提出无疑丰富了博弈论的理论体系,它是人类文明的一片砖瓦。可以肯定的是,百年之后,人们依然不会忘记约翰?纳什的名字,亦不会忘记那个神奇的纳什均衡。



3.博弈论更是一种思维方式



尽管博弈论以数学为基础(而且本身也是数学的分支学科),但它也有平易近人的一面:

即使一个人没有很好的数学基础,也读不懂其中复杂、繁琐的论证过程,仍会有所收获。它的模型案例就如同寓言故事,可以用某种生动、直观的方式揭示现象背后的原理,而且这种揭示过程往往是不乏乐趣的。

与其说博弈论是一门科学,不如说它是一种思维方式。生活在这个世界上的“理性人”都希望实现利益的最大化,而这个目的又不可避免地受到环境、制度和他人的制约,因此人们必须作出选择(也就是策略)。而人们策略的相互作用(这正是博弈研究的课题)又可能导致更多的、更高层次(群体、国家乃至人类)的问题的选择。对于这些问题,我们可能不会找到最佳答案,但是思考这些问题,无疑将大大提高我们的理解能力和决策能力。

博弈论是一种简单明了、人人都该具有的思维方式,这可以让我们避免许多不必要的麻烦。可惜的是事实并不是这样,很多人似乎从来就没有机会建立起一种正常的观念,结果正如那个晴天发愁、雨天流泪的老太太一样,生活中总是麻烦不断。

世界不是一个“幸存者”游戏。在这个“零和”游戏中,胜利是排他的:一人胜利,意味着其他人失败,但在生活中,并不一定这样。

世界复杂,不局限于一个标准。人的追求不同,对“成功”的理解也不同,有人追求金钱,有人追求某种卓越表现,有人追求生活的平衡,他们都有道理,不必强求一致。

我们对博弈论的关注,不应只是为了学会如何战胜别人,而是为了明了人生为什么如此,并从中汲取知识,致力于实现更合理,也更符合群体利益的合作方式,换言之,我们要追求的不仅是“术”——如何打败对手赢得胜利,更应该是“道”——寻求更好的合作关系,获得更多的成就和快乐。



4.博弈论也是有局限性的



《哥德尔不完备定理》认为:任何一个理论体系必然是不完全的,它包含了既不能证明为真也不能证明为假的命题。对这个世界的最好描述可能只有其本身,博弈论也是如此。

要求博弈论能够完全刻画真实的世界,注定是徒劳无功,这也是博弈论的局限性。

正如诺贝尔经济学奖得主莱因哈德·泽尔滕教授所说:“博弈论并不是疗法,也不是处方,它不能帮我们在赌博中获胜,不能帮我们通过投机来致富,也不能帮我们在下棋或打牌中赢对手。它不告诉你该付多少钱买东西,这是计算机或者字典的任务” 。

尽管如此,人类至今还没有找到一种比博弈论更好的思考工具,可以对现实的客观世界进行如此近似的描述。

就像并不完美的力学是自然科学的哲学和数学一样,博弈论是社会科学的力学和数学。没有牛顿力学我们连最简单的物理现象都无法理解;同样的道理,没有博弈论我们也无法解释分析很多现实的社会现象。

为了协调缺陷与现实之间的矛盾,也许我们要听一下博弈论大师鲁宾斯坦的教导:“一个博弈模型是我们关于现实的观念的近似,而不是现实的客观描述的近似” 。



博,就是博那个我们所期待的结果;弈,也是期望能够推动对手往我们期待的方向移动。我们学习博弈,就是为了让我们的人生顺利地朝着我们期望的目标行进。



? ?《博弈论》系列读书笔记到此为止。全剧终。

关于耶鲁大学的公开课——博弈论

好的 还没看过 一会看看 哈哈哈
跟你有同感,但是这也是博弈论的核心所在吧。
本来,博弈论最重要的假设就是人都是理性的,都会追求利益最大化!说白了,博弈论就是一种纯粹的逻辑推理。
但是实际生活中,人都不是理性的,都是拥有个性的。比如说某个人就是爱面子、某些人就是爱公平,宁可牺牲自己也要坚持自己理念等等。还有就是古人讲:富贵险中求,出其不意掩其不备等等,这些都不是按照平常逻辑出牌的,所以也就不太适应了。
这就涉及到人的心理学,包括社会心理学等诸多方面的内容,但是这不是博弈论所要考虑的。
所以说,博弈论是不完美的,他只不过提出了一种解决问题的思路。但是,就是这种不甚完美的理论,却可以被应用到国家经济调控、国家之间利益平衡等复杂的事物分析中,这也是纳什能够依靠博弈论得到诺贝尔经济学奖的原因了。

囚徒困境多次,以二十次为例,怎么解

囚徒困境是博弈论的一个经典案例。
当双方经过多次博弈后,彼此认识到其中的最优选择方案,从理论上讲大家会形成默契:保持同进共退策略,这就是你所说的解决!
但,需要指出的是“多次”这个前提,首先,博弈次数必须是未知,大家都不知道哪一次会是这个游戏的结束;其次,双方在形成默契前,每次游戏结束后,彼此需知道对方在游戏中的策略以备下次选择的参考。
博弈论是门学问,很难掌握,但很有意思。耶鲁大学的博弈论<公开课>

读书笔记—《博弈论与生活》20210917

一,《博弈论与生活》(英)兰?费雪

1,博弈论的前提是你得承认人性是自私的,通过博弈手法,来让自私的人性互相制衡,最后达成一个对大家都有效的解决方案。

***扭转全局的十大要诀。第一,人不犯我,我不犯人,人若犯我我必犯人。以德报德,以直报怨。第二,引入第三方仲裁或者博弈。第三,建立互惠形式。第四,限制你自己的未来选项。第五,付出你的信任。第六,定下特殊条件。如对赌协议。第七,使用补偿给付,开建立维持合作的联盟。如人质。第八,注意七大困境,考量参与者的利益和成本,让困境不复存在。第九,分摊各种责任、工作、惩罚,让人人都觉得结果公平。第十,将团队化整为零。


2,囚徒困境。要解决囚徒困境的办法是我切你分。死海古卷保护。纳什均衡。纳什均衡的定义就是:在任何竞争或冲突中,如果各方不愿或者无法沟通,就至少会有一个纳什陷阱等着请君入瓮。

在各方都选择了同一策略的情形下,没有一方能够通过独自改变策略而获益,此时的策略搭配和后续结果,就构成了纳什均衡。

3,让对方不变卦的三个途径:第一,改变态度,达成协议。第二,诉诸善意的权威人士。第三,制定能够自行运作的策略。就是设定一套能够自由行的机制。

4,要解决囚徒困境,就要解决公平和正义的问题。人们对公平和正义的需求,是一个天然的感受,是底层的动物性的需求。黑猩猩分香蕉的故事。

5,争议部分平均法。如大房二房分财产。如基辛格说:你在谈判桌上能够获得多大的收益,取决于你一开始能够提出多么离谱的条件。

6,调整赢家法。让双方感觉自己都拿到超过一半的所有权。如中介买卖房。

7,其他六个困境:1,公地悲剧。公有的地没人管,造成的结果就是所有的效用都下降。2,搭便车。要解决的办法就是想办法惩罚那些搭便车的行为。3,懦夫博弈,就是不退让的一方会获益的博弈。解决的办法是:笑一笑。经常调整自己的策略。4,志愿者效应。就是第一个站出的和会牺牲。5,两性战争。解决办法是抛硬币。6,猎鹿问题。