本文目录一览:
- 1、AI缘起——达特茅斯会议
- 2、赫伯特·西蒙的生平年表
- 3、约翰·麦卡锡的人工智能之父
- 4、人工智能的道德,谁来塑造?|对话
- 5、马文·明斯基的介绍
- 6、赫伯特·A·西蒙的西蒙和人工智能
- 7、对计算机发展做出重大贡献的科学家
- 8、对计算机发展做出重大贡献的科学家
- 9、对计算机发展做出重大贡献的科学家
AI缘起——达特茅斯会议
1956年,美国汉诺斯小镇宁静的达特茅斯学院,约翰·麦卡锡、马文·闵斯基、克劳德·香农等学者聚在一起,共同讨论着机器模拟智能的一系列问题。他们讨论了很久,始终没有达成共识,却为讨论内容起了一个名字:人工智能。自此,人工智能(AI,Artificial Intelligence)开始出现在人们的视野,1956年也就成为了人工智能元年。
关于人工智能的缘起,在达特茅斯会议前,我们必须要提到一个人——图灵。
1950年,图灵发表论文《计算机器与智能》( Computing Machinery and Intelligence),提出并尝试回答“机器能否思考”这一关键问题。
图灵详细介绍了一种名为“模仿游戏”(The Imitation Game)的测试方法,也就是我们后来更为熟悉的图灵测试。根据《艾伦·图灵传》中的介绍,图灵设想了一种游戏:房间中有一男一女,房间外的人向房间内的男女提问,里面的两个人只能以写字的方式回答问题,然后请房间外的人猜测, 哪一位回答者是女人。注意,在这一测试中,男人可以欺骗猜测者,让外面的人以为自己是女人,女人则要努力让猜测者相信自己。而将这一男一女换成人与计算机,如果猜测者无法根据回答判断哪个是人,哪个是计算机,那么可以判断计算机具有人类智能。
1952年,图灵在一场BBC广播中,提出一个新的更为具体的想法:让计算机来冒充人,如果判断正确的人不足70%,也就是超过30%的人误认为与自己说话的是人而不是计算机,那么可以判断计算机具有人类智能。
图灵测试自诞生来产生了巨大影响,图灵奖被称为“计算机界的诺贝尔奖”,图灵也被冠以“人工智能之父”的称号。
人工智能的起源公认为是1956年的达特茅斯会议,这次大会标志着“人工智能”这一概念的诞生。先介绍下本次大会的关键学者。
会议的主要发起人——约翰·麦卡锡(John McCarthy),计算科学家、认知科学家,也是他提出了“人工智能”的概念。麦卡锡对于人工智能的兴趣始于1948年参加的一个名为“脑行为机制”的讨论会,会上,冯·诺伊曼(John von Neumann)提出的自复制自动机(可以复制自身的机器)激起麦卡锡的好奇,自此开始尝试在计算机上模拟智能。达特茅斯会议前后,麦卡锡的主要研究方向是计算机下棋。
另一位积极的参与者是当时在哈佛大学的明斯基(Marvin Minsky,1969年图灵奖获得者),他的老师塔克(Albert Tucker)多年来担任普林斯顿大学数学系主任,主要研究非线性规划和博弈论。1951年,明斯基建造了世界上第一个神经网络模拟器Snare。在Snare的基础上,明斯基解决了“使机器能基于对过去行为的知识,预测当前行为的结果”这一问题,并完成了他的博士论文《Neural Nets and the Brain Model Problem》。
塞弗里奇(Oliver Selfridge),模式识别的奠基人,后来领导了MAC项目,这个项目后被分为计算机科学实验室与人工智能实验室,又合并为麻省理工学院最大的实验室MIT CSAIL。
另外两位重量级参与者是纽厄尔(Allen Newell)和西蒙(Herbert Simon),这两位学者后来共享了1975年的图灵奖。
纽厄尔在普林斯顿大学数学系硕士毕业后,加入了美国著名的兰德公司,并结识了西蒙,开始了他们一生的合作。纽厄尔和西蒙提出了物理符号系统假设,简单的说就是:智能是对符号的操作,最原始的符号对应于物理客体。这一假设与西蒙提出的有限合理性原理成为人工智能三大学派之一——符号主义的主要依据。后来,他们与珀里思(Alan Perlis,第一届图灵奖获得者)共创了卡内基梅隆大学的计算机系。
最后,信息论的创始人香农(Claude Shannon),他比其他几位年长10岁左右,当时已经是贝尔实验室的大佬。1950年,香农发表论文《Programming a computer for playing chess》,为计算机下棋奠定了理论基础。
除上述学者外,IBM的塞缪尔(Arthur Samuel),达特茅斯的摩尔(Trenchard More)、算法概率论的创始人所罗门诺夫(Ray Solomonoff)等学者也参与了这次会议。
1953年夏天,麦卡锡和明斯基都在贝尔实验室为香农打工。香农当时在研究图灵机及是否可以用图灵机作为智能活动的理论基础,但是麦卡锡只对计算机实现智能感兴趣。由于与香农研究方向上的不同加上麦卡锡认为香农在一些时候过于理论,所以麦卡锡与IBM第一代通用机701的主设计师罗切斯特(Nathaniel Rochester)计划搞一次活动,主要讨论机器模拟智能,并说动香农与明斯基共同写了一个项目建议书以寻求活动资助。
麦卡锡给这个活动起了一个名字:人工智能夏季研讨会(Summer Research Project on Artificial Intelligence)。
会议的主要议题有以下7个方面:
达特茅斯研讨会进行了两个月,其中,纽厄尔和西蒙公布的程序“逻辑理论家”(Logic Theorist)引起参会者极大的兴趣,这个程序模拟人证明符号逻辑定理的思维活动,并成功证明了《数学原理》第2章52个定理中的38个定理,被认为是用计算机探讨人类智力活动的第一个真正成果,也是图灵关于机器可以具有智能这一论断的第一个实际证明。此外,逻辑理论家开创了机器定理证明这一新的学科领域。
最后补充一下,在达特茅斯会议期间,“人工智能”这一词虽然被提出,但并没有获得大家的完全认可,尤其是纽厄尔和西蒙,他们的研究在某种意义上偏向于功能学派,他们更主张用“复杂信息处理”这个词。"人工智能"一词真正被学界接受要到1965年,德雷弗斯(Hubert Dreyfus)发表了著名的《炼金术与人工智能》报告,这一报告对当时人工智能的研究提出质疑,意图说明这些研究是没有基础的无用功。由于报告标题与内容过于大胆,最初兰德公司仅以备忘录的方式发布了油印版,直至1967年,兰德公司才正式发布了这一报告的印刷版。该报告后来成为兰德公司销量最高的报告之一,在AI学者中广为流传,关于这一报告的具体影响,我们将在之后的文章中为大家进行更为详细的介绍。
赫伯特·西蒙的生平年表
1916年6月15日 西蒙生于美国威斯康辛州米尔沃尔,父亲是一名在德国出生的电气工程师,母亲是一个多才多艺的钢琴演奏家。1933年 进入芝加哥大学政治系学习。在上大学时,西蒙就对密尔沃基市游乐处的组织管理工作进行过调查研究,这项研究激发起了西蒙对行政管理人员如何进行决策这一问题的兴趣,这个课题从此成为他一生事业中的焦点。1936年 从芝加哥大学毕业,取得政治学学土学位。之后,他应聘到国际城市管理者协会ICMA(International City Managers’Association)工作,很快成为用数学方法衡量城市公用事业的效率的专家。在那里,他第一次用上了计算机,对计算机的兴趣和实践经验对他后来的事业产生了重要影响。1937年 圣诞节在威斯康辛州米尔沃尔,与芝加哥大学社会学系秘书多萝西娅·派伊结婚。1939年 转至加州大学伯克利分校,负责由洛克菲勒基金会资助的一个项目,这个项目是对地方政府的工作和活动进行研究。这期间,他完成了博士论文,内容是关于组织机构如何决策的研究。这一论文成为其代表作《管理行为》的雏形。1942年 在完成洛克菲勒基金项目以后,西蒙转至伊利诺伊理工学院政治科学系,在那里工作了7年,其间还担任过该系的系主任。1943年 经其母校芝加哥大学进行评审与答辩后,被授予政治学博士学位。1949年 在卡内基—梅隆大学的经济管理研究生院任教。他一生中最辉煌的成就就是在这里做出的。1956年夏天 数十名来自数学、心理学、神经学、计算机科学与电气工程等各种领域的学者聚集在位于美国新罕布什尔州汉诺威市的达特茅斯学院,,讨论如何用计算机模拟人的智能,并根据麦卡锡的建议,正式把这一学科领域命名为“人工智能”。西蒙和纽厄尔参加了这个具有历史意义的会议,而且他们带到会议上去的“逻辑理论家”是当时唯一可以工作的人工智能软件,引起了与会代表的极大兴趣与关注。因此,西蒙、纽厄尔以及达特茅斯会议的发起人麦卡锡和明斯基被公认为是人工智能的奠基人,被称为“人工智能之父”。1957年 西蒙与别人合作开发了IPL语言(1nformation Processing Language)。在AI的历史上,这是最早的一种AI程序设计语言,其基本元素是符号,并首次引进表处理方法。1958年 荣获美国心理学会杰出贡献奖。1960年 西蒙夫妇做了一个有趣的心理学实验,这个实验表明人类解决问题的过程是一个搜索的过程,其效率取决于启发式函数(heuristic function)。在这个实验的基础上,西蒙、纽厄尔和肖又一次成功地合作开发了“通用问题求解系统GPS(General Problem Solver)。GPS是根据人在解题中的共同思维规律编制而成的,可以解11种不同类型的问题,从而使启发式程序有了更普遍的意义。1966年 西蒙、纽厄尔和贝洛尔(Baylor)合作,开发了最早的下棋程序之一MATER。1968年 被任命为总统科学顾问委员会委员。1969年 美国心理学会由于西蒙在心理学上的贡献而授予他“杰出科学贡献奖”(Distinguished Scientific Contributions Award)。20世纪60年代末70年代初 西蒙提出“决策模式理论”这一核心概念,为当前受到极大重视的决策支持系统DSS(Decision Support System)奠定了理论基础。1970年 在研究自然语言理解的过程中,西蒙发展与完善了语义网络的概念和方法,把它作为知识表示(knowledge representation)的一种通用手段,并取得很大成功。1972年7月 作为美国计算机科学家代表团成员之一第一次到中国访问。之后又9次来华访问。1975年 他和艾伦·纽厄尔因为在人工智能、人类心里识别和列表处理等方面进行的基础研究,荣获计算机科学最高奖——图灵奖。1976年 西蒙和纽厄尔给“物理符号系统” 下了定义,提出了“物理符号系统假说”PSSH(Physical Symbol System Hypothesis),成为人工智能中影响最大的符号主义学派的创始人和代表人物,而这一学说则鼓励着人们对人工智能进行伟大的探索。这也是两人在人工智能中做出的最基本的贡献。1976—1983年间 西蒙和兰利(Pat W.Langley)、布拉茨霍夫(Gary L.Bradshaw)合作,设计了有6个版本的BACON系统发现程序,重新发现了一系列著名的物理、化学定律,证明了西蒙曾多次强调的论点即科学发现只是一种特殊类型的问题求解,因此也可以用计算机程序实现。1978年 由于西蒙对“经济组织内的决策过程进行的开创性的研究”,荣获诺贝尔经济学奖。1980年 中国天津大学聘任西蒙为该校名誉教授,并派出一些学者在西蒙指导下进行短期记忆方面的研究。1985年 中国科学院心理研究所授予西蒙教授名誉研究员称号。1986年 因其在行为科学上的出色贡献而荣获美国全国科学奖章(National Medal of Science)。1995年 在国际人工智能会议上被授予终身荣誉奖。2001年2月9日 西蒙去世,享年85岁。
约翰·麦卡锡的人工智能之父
如今我们能享受到的每一份科技发展带来的红利,其中都有图灵的一份功劳,在短短的41年里,他取得了太多太多的成就,但一个愚昧且狭隘的时代,促成了这位旷世天才的过早陨落,造物弄人,这也许是大多天才的无奈。
麦卡锡是一个天赋很高的人,还在上初中时,他就弄了一份加州理工大学的课程目录,按目录自学了大学低年级的高等数学教材,做了教材上的所有练习题。这使他1944年进入加州理工学院以后可以免修头两年的数学,并使他虽因战时环境(第二次世界大战当时正在进行之中,美国也在珍珠港事件后宣布参战)要在军队中充任一个小职员,占去了部分时间,仍得以·在1948年按时完成学业。然后到普林斯顿大学研究生院深造,于1951年取得数学博士学位。麦卡锡留校工作两年以后转至斯坦福大学,也只呆了两年就去达特茅斯学院任教(达特茅斯学院位于新罕布什尔州的汉诺威)。在那里,他发起了并成功举办了成为人工智能起点的有历史意义的“达特茅斯会议”。1958年麦卡锡到MIT任职,与明斯基一起组建了世界上第一个人工智能实验室,并第一个提出了将计算机的批处理方式改造成为能同时允许数十甚至上百用户使用的分时方式的建议,并推动MIT成立组织开展研究。其结果就是实现了世界上最早的分时系统——基于IBM 7094的CTSS和其后的MULTICS。麦卡锡虽因与主持该课题的负责人产生矛盾而于1962年离开MIT重返斯坦福,未能将此项目坚持到底,但学术界仍公认他是分时概念的创始人。麦卡锡到斯坦福后参加了一个基于DECPDP—1的分时系统的开发,并在那里组建了第二个人工智能实验室。麦卡锡对人工智能的兴趣始于他当研究生的时候。1948年9月,他参加了一个“脑行为机制”的专题讨论会,会上,冯·诺伊曼发表了一篇关于自复制自动机的论文,提出了可以复制自身的机器的设想,这激起了麦卡锡的极大兴趣和好奇心,自此就开始尝试在计算机上模拟人的智能。1949年他向冯·诺伊曼谈了自己的想法,后者极表赞成和支持,鼓励他搞下去。在达特茅斯会议前后,麦卡锡的主要研究方向是计算机下棋。下棋程序的关键之一是如何减少计算机需要考虑的棋步。麦卡锡经过艰苦探索,终于发明了著名的α-β搜索法,使搜索能有效进行。在。-p搜索法中,麦卡锡将结点的产生与求评价函数值(或称返上值或倒推值)两者巧妙地结合起来,从而使某些子树结点根本不必产生与搜索。之所以称为。—p搜索法,是因为将处于取最大值级的结点的返上值或候选返上值PBV称为该结点的α值,而将处于取最小值级的结点的候选返上值或返上值称为该结点的p值。这样,在求得某结点的。值时,就可与其先辈结点的p值相比较,若。≥p,则可终止该结点以下的搜索,即从该结点处加以修剪,这叫p修剪;而在求得某结点的p值时,就可与其先辈结点的α值相比较,若p≤。,则可终止该结点以下的搜索,即从该结点处加以修剪,这叫。修剪。为了说明。-p修剪,我们举一个最简单的例子。设在取火柴棍的游戏中,A、B两人轮流从N根火柴中取1根或2根,不得多取,也不能不取。取走最后一根火柴者胜。用A(n)、B(n)表示轮到A或B时有n根火柴的状态,当n:5时轮到A取,A有两种可能,一是取2根火柴进入B(3),另一是取1根火柴进入B(4)。显然,进入B(3)后,不管B取几根,A必胜,故A必走这一步,余下的分支不必再搜索了。。-p搜索法至今仍是解决人工智能问题中一种常用的高效方法。至于达特茅斯会议,当东道主的麦卡锡是主要发起人,另外3个发起人是当时在哈佛大学的明斯基(1969年图灵奖获得者),IBM公司的罗杰斯特,信息论的创始人香农。麦卡锡发起这个会议时的目标非常宏伟,是想通过10来个人2个月的共同努力设计出一台具有真正智能的机器。会议的经费是洛克菲勒基金会资助的,包括每个代表1 200美元加上外地代表的往返车票。会议的原始目标虽然由于不切实际而不可能实现,但由于麦卡锡在下棋程序尤其是α—β搜索法上所取得的成功,以及卡内基—梅隆大学的西蒙和纽厄尔这两人是1975年图灵奖获得者带来了已能证明数学名著《数学原理》一书第二章52个定理中的38个定理的启发式程序“逻辑理论家”LT,明斯基带来的名为Snarc的学习机的雏形(主要学习如何通过迷宫),这使会议参加者仍能充满信心地宣布“人工智能”这一崭新学科的诞生。
人工智能的道德,谁来塑造?|对话
人工智能伦理的下一步是什么?| 图源:pixabay.com
导 读
2021年11月,经过两年时间的准备,联合国教科文组织(UNESCO)发布关于人工智能伦理的建议书,这是首个全球性的人工智能伦理标准,参与国家多达193个。
建议书呼吁各国采取数据保护行动,提出人工智能系统不得用于 社会 评分或大规模监控目的。
《知识分子》就该建议书的内容对话UNESCO专家组成员 曾毅 ,他认为:
人工智能曾经是一个科学畅想,但在当下是一个“伞概念”,包括各种涉及算法的技术;
“相称性”应当是人工智能应用时的重要原则;
人工智能原则上不应应用于大规模监控和 社会 评分,但也应有例外情况;
伦理规则不应只在人工智能产品的设计阶段起作用,只有在全生命周期真正做技术落地,才有可能真正实现治理;
人工智能在研究过程中不需要太多限制的说法是误区,学界应当在人工智能技术发展和伦理治理中发挥引领作用;
只有人工智能的发展和治理的深度协同,才能最终实现人工智能的可持续稳健发展;
未来人工智能特别应当在推进生物多样性与生态发展、气候治理、文化交互等领域发挥赋能作用,助力全球可持续发展目标的实现。
撰文 | 王一苇
责编 | 陈晓雪
“欧盟在制定相关标准时,不会考虑亚洲的关切…… 不同国家的文化背景使得他们对于技术阵痛的观察视角不同。” 中国科学院自动化研究所人工智能伦理与治理中心主任、国家新一代人工智能治理专委会委员曾毅说,“而UNESCO包含了几乎所有的主权国家和相关地区,应当说是最广泛的共识。”
他指出,没有任何一个国家能预知到所有可能的潜在风险,各个国家根据自己国家的价值观、 社会 伦理和技术发展阶段来考量。这就需要大家同步互补的观点,互相学习和交流。
UNESCO的建议书以尊重、保护和促进人的尊严、人权和基本自由,环境和生态系统的蓬勃发展,确保多样性和包容性和和谐与和平共处为价值观,提倡公平非歧视、可持续、隐私等原则。
建议书认为,“人工智能” 这一概念随发展而变化,因此不给出唯一定义,只将其视为 “有能力以类似于智能行为的方式处理信息的技术系统”,其中,包含模型和算法是其主要特征。
曾毅在中国科学院大学和清华大学任职,既是类脑智能模型的研究者,也 “跨界” 钻研人工智能伦理与治理。他是起草教科文组织建议书的24位全球专家之一,同时也是中国参与协商该建议书的代表。多个国家讨论出一个共同的伦理标准并非易事,他坦陈 “这是一个求最大公约数的过程”。
第一版草稿形成后,联合国自2020年开始组织区域性的对话,同时教科文组织也把第一版草稿发到各个会员国,正式征求国家建议。2021年6月份左右,193个会员国派出代表,进行政府间磋商,对文本当中的每一个段落做逐字逐句的修改。
针对这份建议书,《知识分子》与曾毅聊了聊他参与起草的过程和对人工智能伦理现状的观察。
为了表述的简洁和清晰,访谈稿略有编辑。
知识分子 :建议书称 “无意对人工智能作出唯一的定义”,只探讨 “人工智能系统中具有核心伦理意义并且在国际上已形成广泛共识的特征”,为什么?我们现在说的 “人工智能” 到底指的是什么?
曾毅: 每个机构、国家,在人工智能战略里对人工智能的定义都不一样,在这上面达成一个全球共识并不必要。它本身就是一个与时俱进的概念,是快速迭代的。人工智能的定义本身也需要适应时代发展。
一开始,人工智能是一个科学畅想。1956年的达特茅斯会议 (作者注:普遍认为是人工智能领域的发起会议) 上,发起人 John McCarthy 说,这个会议的目的是 “从一个猜想出发,即原则上,智能每个方面的学习方式和特征都能被精确描述,使得机器能够模拟它们”。 [1] 即在计算机系统上重现人类的心智。这种重现不仅仅是行为上的,更是机制上的。
人工智能最开始的目标是推进科学进展,使人们生活得更好,从很多领域内,尤其是体力劳动中,把人解脱出来。现在人工智能的应用在替代劳力的方面确实比较相关。
但几十年后,人工智能变成了一个 umbrella term (伞概念,指概括性的术语) ,特别是面向产业的时候,不管是自然语言处理、数据挖掘、机器视觉等,都叫人工智能。
现在的人工智能已经不仅仅是一个科学 探索 的领域。现在一个学生做了一个新算法,比如用户上传图片,人工智能就画一个类似的铅笔画出来,谁都可以用。这个图像可能就存在一个大学实验室的机器上,机器获取了你的数据,却不一定有人仔细思考如何去保护你的数据。但个人信息一次的丢失就意味着终身的风险,你甚至都不知道这样的信息丢失在10年20年后对你来说意味着什么。你没有想过,做应用的人也没有想过。别有用心的人就有可能通过各种途径收集数据,对我们产生负面影响。
尽管我非常不喜欢,但现在大家把这些东西叫做人工智能,它的服务出现在我们生活中。而创造程序的人几乎没有经过任何伦理学培训。
2018年开始,我在中国科学院大学开设了一门人工智能哲学与伦理的课。当时开课很困难,大家说你又不是伦理学者,凭什么讲这样的课?诺贝尔奖和图灵奖获得者、卡耐基梅隆大学的司马贺 (Herbert Simon) 写文章 [2] 讨论过一个观点,好的交叉学科研究,一定是领域A的专家变成半个领域B的专家。人工智能伦理也是这样的。
80%来上我的课的学生都是工学相关专业,20%来自人文学院。对于技术研究者,人工智能创新几乎每走一步,都可能涉及 社会 关怀、 社会 伦理,他们需要知道注意哪些 社会 伦理问题,需要了解未来二三十年人工智能作为一个道德主体可能对 社会 造成的挑战;而从事科学技术哲学研究的学生,未来将会是中国人工智能 社会 相关领域重要的意见领袖,他们需要知道人工智能真正的进展。
知识分子 :怎么看待建议书中 “人工智能不能用于大规模监控和 社会 信用评分” 的表述?
曾毅: 人工智能不能用于大规模 社会 监控和 社会 信用评分,是政府间磋商时德国的学者提出、列进去的。
说到这个,就要提及我们讨论的一个概念叫proportionality (相称原则) ,意思是,不是什么时候人工智能都好,不需要的时候就不要用。现在很多技术创新者会提出 making AI everywhere (让人工智能无处不在) ,我看到的时候就觉得,有必要吗?
以城市治理为例。舒可文先生的著作《城里:关于城市梦想的叙述》指出,城市的规划,一半是野蛮生长,一半是规划,这才叫做城市。因为城市中除了技术还有人际关系,它的形成方式是多样的。人工智能也不是什么地方都要去介入,应当适度使用。
不过我有一点保留意见,即使在欧盟的人工智能法中,大规模 社会 监控这件事也是有例外的。比如抓逃犯、寻找丢失的小孩、威胁国家和 社会 安全的特殊情况,是可以去应用相关的技术的。中国也在这些领域应用了这些技术,如寻亲打拐,效果也很好。但在教科文组织的规范中,并没有明确给出例外情况,我觉得不是特别合适。
社会 评分当中是否要使用人工智能,我觉得确实需要慎重思考。
社会 信用系统现在是一个精确匹配的自动控制系统,不是人工智能,没有学习能力。很多规则都是清晰的、人类定义的规则,比如违反交规的扣分和罚款你不交,但有钱去买机票,这个就说不过去。但如果基于大规模的数据去学,学到规则后应用到 社会 信用评分中,我作为普通公民也会比较担忧,因为学到的这个规则里,很可能有人类的偏见,如果没有人类来辨别,直接应用很可能有潜在风险。
例如,推荐工作的人工智能系统,给40多岁的男性推荐高管职位,给28岁的女性推荐服务员职位,这就是系统学到了 社会 的偏见。谁说28岁的女性不能当高管呢?人工智能现在没有真正理解的能力,它甚至不知道什么是男女,不知道什么是不公平,也不知道什么是身体和心理的伤害,那么怎么可能对这种偏见去做处理?
曾毅在看一本讲全球公平的图书,他说,“未来使机器人真正理解公平”是AI伦理的核心 | 图片由曾毅提供
有些人说,技术是中立的,我不同意这个说法。我觉得说技术中立是一个借口。技术学到了偏见,但没有去处理,它还是中立的吗?推荐算法没有加入干预的过程,而推说这些都是 社会 的问题,这都是在找借口, 社会 的问题不代表你没有解决的办法。
正是因为有这样潜在的问题,在没有人为筛选和有意监督的情况下,把人工智能应用到 社会 评分领域,可能会造成巨大的负面效应。目前我还没有看到这样的例子,希望在哪里都不要发生。
知识分子: 由于新冠疫情,各个国家都开展了不同规模的 社会 监控和信用评分,这和上述原则不是背道而驰吗?
曾毅: 2020年3月份, MIT Technology Review 做了一个工作,分析了各个国家 contact tracing (密接追踪) 的软件 [3] ,评价上,如果强制收集信息就很糟糕,不强制就好一点;国家运营的话也很糟糕,私营的就好一点。可以看到,中国的评分很糟糕。我认为它的评分很不客观,它只考虑了伦理方面。
选择性地向用户要求信息,实际上降低了这个系统的有效性。如果系统使用过程中采取并非强制而是完全自愿的原则,有可能导致密切接触网络的关键数据缺失,使得系统的数据分析无效,或者效果很差,那么我们为什么要用它?去用一个伦理设计上更道德、但应用层面效果很差的系统,还不如不用。Wired杂志后来有个报道 [4] ,说西方国家的 contact tracing 似乎没有亚洲国家那么有效。有效性到很后期的时候才被西方国家提上日程讨论。
在这个过程中,我们要学到的是如何平衡。这种平衡不是妥协。接受为了疫情而采集温度和人脸信息的数据,不意味着让渡隐私。2020年底,在 健康 码上输入身份证就可以获取到明星的素颜照,这就是开发 健康 码系统的机构没有很好地保护个人数据。 (作者注:2020年12月29日,对于北京 健康 宝“代查他人 健康 状态功能,有时不需要进行人脸识别”的情况,开发北京 健康 宝的单位北京市经济和信息化局大数据建设处(智慧城市建设处)回复称:“此问题已解决。” 事件中未见问责。)
如果相关的机构不能有效保护这些数据,是应当负责任的。2021年11月1日起施行的《中华人民共和国个人信息保护法》,规定个人信息处理者应制定内部管理制度和操作规程,加密,安全培训,制定安全事件预案等方式确保其收集的个人信息的安全,而如果违规违法,则将面临从警告、罚款、停业到刑事处罚的惩罚。此外,2019年起施行的《儿童个人信息网络保护规定》专门针对不满14岁的未成年人信息保护作出规定,违反者由网信部门和其他有关部门依据职责,根据《中华人民共和国网络安全法》《互联网信息服务管理办法》等相关法律法规规定处理;构成犯罪的,依法追究刑事责任。此外,国家互联网信息办公室近期刚结束征求意见的《移动互联网应用程序信息服务管理规定》修订版规定,应用程序的发行者和发布平台应接受 社会 监督、设立举报机制,对于存在数据安全风险隐患、违法违规收集使用个人信息行为的,或者损害个人、组织合法权益的应用程序,应当停止提供服务。
即使这样的系统是必要的,这不代表用户以任何形式让渡了隐私。它其实提出了更严格的要求,在满足隐私保护约束的前提下,才可以采集信息。
政府对于技术发展的管理和治理有一个学习的过程,而基础设施研发团队如果伦理意识淡薄、安全意识缺位,就会使得购买了服务的政府要为可能出现的纰漏背书。政府一定开展了质量评估,但是由于AI伦理专家的缺位或者设计的缺陷,并不是所有的伦理问题能够在评估阶段发现。政府应该为此负责,但是由于部分信息不透明,有时候我们可能无法了解后续处理情况。在这种情况下,在 社会 舆论监督的影响和政府的督促下及时调整系统设计与实现,是底线。
知识分子: 纸面上的伦理规则,如何落到现实中?
曾毅: 伦理原则即使在设计阶段发挥了一些作用,但在算法实现、产品服务和产品部署的过程中如果不注意,都可能带来各种各样的问题。只有在人工智能产品的全生命周期 (包括它的上下游客户) 真正做技术落地,才有可能真正实现治理。
举个例子,2019年杭州野生动物世界的案子 (作者注:杭州市民郭兵于2019年购买杭州野生动物世界双人年卡,并确定指纹识别入园方式,但野生动物世界此后强制要求激活人脸识别,否则无法入园,郭兵因此提起诉讼,该案以郭兵胜诉告终,被称为 “全国人脸识别第一案”) ,其实就包括使用和部署环节的问题,知情同意没有做好。此外,采集的数据到底是保存在动物园还是相关企业,企业的保密和数据加密资质是什么样的?这一切都不清晰。
而在伦理原则还未落地、还不是法律的时候,如何实施?换脸软件ZAO和教室表情识别看学生是否认真听讲,是两个具体的例子。ZAO在上线后三四天下线,被工信部约谈;而教室表情识别的事发生后,教育 科技 司表态,在不必要的场合就不需要引入人工智能,建议不要使用,那时就基本上叫停了相关服务的发展。当时绝大多数人脸识别企业都有做类似尝试,有些可能已经形成应用,甚至规模化应用。据我所知,很多企业的这条产品线基本也都停掉了。
法律讲的是底线,红线。 科技 发展过程中法律的守护底线红线作用永远不可替代。而 科技 伦理问题是法律之上的 科技 发展与 社会 之间的软性约束和契约。不触犯法律并不代表没有道德伦理问题。伦理道德对 科技 发展的考量和反思是确保 科技 健康 发展不可或缺的要素。 科技 发展与 科技 伦理形成双螺旋结构, 科技 才能稳健地助力人类文明的繁荣。
企业创新者要做全生命周期的伦理落地,要自律自治。有些企业有专门的伦理委员会和伦理研究组,但有一些小企业或者初创企业没有这个能力,学术界和政府应该给他们提供伦理相关的服务,以公共服务的方式,避免这个问题,后面的监管会省很大力气。
我们现在也在和政府相关部门合作推进人工智能治理的公共服务平台。 [5]
知识分子: 人工智能是不是安全和人工智能是不是道德,有关系吗?
曾毅: 人工智能安全和人工智能伦理是两回事,但它们不是不相关的事。安全是AI伦理的一个必要属性。
技术风险会引起 社会 问题。举例来说,现在的深度神经网络做看似智能的信息处理,但经常会犯人不会犯的错误。去年11月,世界公众科学素质促进大会在北京举办的时候,一个做新冠病毒感染肺炎筛查的企业说他们的准确率已经超过了医生,完全可以替代医生。那时候还没轮到我发言,但我当时不得不打断,我说毕竟这是一个科学素养大会,做的是公众科普 (传达的信息要准确) 。人工智能永远不应该代替人类决策,说完全替代医生,这是完全错误的。因为现在的人工智能系统很容易造成误诊。比如一个皮肤癌筛查的系统,一个角度照手上的小包就是99.99%的可能性,换一个角度就检测不到。这种错误医生是不会犯的。人工智能说是99.99%的准确率,但一张图像加一点噪声,就可能被识别为其他东西。
有人说,识别错了又怎么样呢?我举一个例子,谷歌的3D物体识别系统,有80%的概率将一个3D打印的乌龟识别为一把来福枪,20%的概率识别为其他东西,但没有一次识别为乌龟。设想这样一个场景,10岁的小孩拿着一个3D打印的乌龟站在马路边上,但监控系统把它识别为10岁的小孩拿着一把来福枪站在马路边。如果有人刻意制造这样的事件,对于 社会 的治安将是很大的挑战。
又例如未来的自动驾驶无人车,如果被黑客操控了,如果 (被威胁方) 不交钱就直接开到悬崖下,甚至用于攻击 社会 ,这种风险都是技术本身的风险。
人工智能的风险要分等级,应当对应用紧迫、高风险的领域做合理的分级管理。例如自动驾驶的风险不仅仅在全自动驾驶的时候有,辅助驾驶时,如果视觉系统被攻击,检测不到图像,前面一片白,它就冲过去了。
最麻烦的事情不是技术解决不了这些问题,而是伦理意识的缺失。本来容易解决、可以防患于未然的事情没有人重视,在产品研发过程中没有解决,这才是现阶段我们最大的风险。所以为什么说号召大家把伦理原则嵌入整个产品的生命周期,就是这个意思。
知识分子: 企业对于这份建议书有什么样的反馈?
曾毅: 有一些企业会说,它似乎符合其中70-80%的原则,非常自豪。我就说,其实后面的20-30%才是最关键的。如果其中70-80%都不符合,可想而知你做的是一个什么样的产品。
如何去解决后20-30%的问题,我觉得是一个共同挑战。企业与学术界有距离,很可能不知道如何落地,或者有些问题现在大家考虑都比较少,就需要学界和业界共同努力。比如,大家都谈用户隐私,用户授权后,不满意了要撤销,不想用这个服务了,那么你得把我的数据删掉。在数据库里删掉用户数据很容易做到,但人工智能模型中,把用户的特征数据删掉,对于每个模型都很难。除非你重新训练人工智能模型。但对很多企业,重新训练要两个礼拜、一个月甚至半年才做一次,很难做到真正意义上的实时用户授权撤销。
真正可持续的发展,责任不光在政府,很多时候是一个生态共同体。按联合国规划,我们总共有不到十年时间实现这些可持续 (发展) 目标。如果仅仅是政府在推动,这个目标很难在十年内实现。
知识分子: 学界在开展人工智能研发活动时,需要注意什么?
曾毅: 一方面,我想纠正一个错误观念,认为在研究阶段不需要太多的限制。我觉得这是不对的。
例如做人脸识别算法,就算没有提供服务,收集了人脸来提升性能,是不是就不会有伦理问题?如果在研究阶段没有伦理考量,很容易因为利益引诱,成果或者副产品作用到 社会 ,产生负面影响。
另一方面,伦理的前瞻性研究,学术界一定要发挥引领作用。一方面是在人工智能服务中加入道德约束,使得它更符合伦理道德规范;另一方面,未来是否能开发真正能自主学习、理解人类伦理道德的人工智能,是非常重要的学术挑战。
仅有产业界的努力是完全不够的,甚至几乎没有产业在做这样的事情。
可持续发展和治理是深度协同的关系,既不是竞争,也不是平衡,就像DNA的双链结构,互为支撑,使结构相对稳定。实现发展和治理的深度协同,最终才能实现稳健的发展。学术界应当前瞻性地作出引领工作。中国和阿联酋的人工智能规范中比较强调可持续,其他国家的可能没有那么明显。
人工智能在实现过程中也会带来碳排放。现在人工智能在向大模型方向发展,能耗是非常高的。而产业在推进大模型研发的过程中,基本没有考虑碳排放的问题。人工智能本身的目的是去替代一些体力劳动,但如果替代过程中碳排放的成本还高于人力,负面作用很大,是否值得就是个问题。我们自己做了一个研究,叫做AI Carbon Efficiency Observatory [6] ,人工智能碳能效的观测站。把所有人工智能大模型的碳排放情况列出来,让大家去看一看。
此外,指南中提到的另一个要点是人工智能应该促进文化传承。当时其他的代表提出人工智能促进文化传承,我说,传承是保护,没有交互,它可以更进一步,不仅保护文化,还可以找到文化之间的联系,通过人工智能赋能文化交互。比如你对法隆寺这个传统的佛教寺庙比较熟悉,但不熟悉故宫,它们之间的关联实际上非常多。你喜欢敦煌,而敦煌的文化其实和来自世界其他国家的文化是非常相关的。文化交互引擎(Cultural Interactions Engine) [7]就是通过人工智能技术自动发现不同文化的景点和自然资源间存在着的关联。
参考资料:
[1]https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth
[2]https://www.psychspace.com/psych/viewnews-7830
[3]https://www.technologyreview.com/tag/covid-tracing-tracker/
[4]https://www.wired.com/story/why-contact-tracing-apps-not-slowed-covid-us/
[5]https://www.ai-governance.online/cn
[6]http://ai-carbon-efficiency-observatory.ai-for-sdgs.academy/
[7]http://cultural-interactions-engine.ai-for-sdgs.academy/
制版编辑 | 卢卡斯
马文·明斯基的介绍
马文·明斯基是“人工智能之父”和框架理论的创立者。和麦卡锡(J.McCarthy)一起在1956年发起“达特茅斯会议”并提出人工智能(artificial intelligenee)概念的计算机科学家马文·明斯基(Marvin Lee Minsky)被授予了1969年度图灵奖,是第一位获此殊荣的人工智能学者。其后,麦卡锡(1971年),西蒙(H.A.Simon)和纽厄尔(A.Newell.1975年),费根鲍姆(E.A.Feigenbaum)和劳伊·雷迪(Raj Reddy,1994年)等5名人工智能学者先后获奖,在至今获图奖的40名学者中占了近1/6,可见人工智能学科影响之深远。
赫伯特·A·西蒙的西蒙和人工智能
20世纪50年代以后,西蒙的研究方向发生了重大转移,逐渐转向了认知心理学和人工智能领域。西蒙认为,社会科学缺乏像自然科学一样的科学性,社会科学需要借鉴自然科学严格和精确的研究方法,才能成为真正意义上的科学。同时,在西蒙看来,经济学、管理学、心理学等学科所研究的课题,实际上都是“人的决策过程和问题求解过程”。要想真正理解组织内的决策过程,就必须对人及其思维过程有更深刻的了解。因此,借助于计算机技术的发展,西蒙与同事纽厄尔等人一起开始尝试用计算机来模拟人的行为,从而创建了认知心理学和人工智能研究新领域。西蒙认为,人的思维过程和计算机运行过程存在着一致性,都是对符号的系列加工,因此,可以用计算机来模拟人脑的工作。他甚至大胆地预言,人脑能做的事,计算机同样也可以完成。“初级知觉和记忆程序(EPAM)”和“通用问题求解系统(GPS)”等人工智能软件的问世,部分证实了西蒙的预言。当时人工智能的主要学派有下列三家:①符号主义(Symbolicism),又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism),其原理主要为物理符号系统假设和有限理性原理。这一学派认为人工智能源于数理逻辑。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流学派。这个学派的代表有纽厄尔、肖、西蒙和尼尔逊(Nilsson)等。②联结主义(Connectionism),又称为仿生学派(Bionicsism)或生理学派(Physiologism),其原理主要为神经网络及神经网络间的连接机制与学习算法。这一学派认为人工智能源于仿生学,特别是人脑模型的研究。从模型到算法,从理论分析到工程实现,为神经网络计算机走向市场打下了坚实的基础。③行为主义(Actionism),又称进化主义(Evolutionism)或控制论学派(Cyberneticsism),其原理为控制论及感知-动作型控制系统。他们对人工智能发展历史具有不同的看法,这一学派认为人工智能源于控制论。西蒙在人工智能中做出的最基本贡献,是他提出了“物理符号系统假说”PSSH(Physical Symbol System Hypothesis)。在这一意义上,他是符号主义学派的创始人和代表人物之一。他的基本观点是:知识的基本元素是符号,智能的基础依赖于知识,研究方法则是用计算机软件和心理学方法进行宏观上的人脑功能的模拟。符号主义的主要依据是两个基本原理:①物理符号系统假设原理。②由西蒙提出的有限合理性原理。这一学说鼓励着人们对人工智能进行全面的探索。西蒙认为,任何一个物理符号系统如果是有智能的,则肯定能执行对符号的输入、输出、存储、复制、条件转移和建立符号结构这样六种操作。反之,能执行这六种操作的任何系统,也就一定能够表现出智能。根据这个假设,我们可以推出以下结论:人是具有智能的,因此人是一个物理符号系统;计算机是一个物理符号系统,因此它必具有智能;计算机能模拟人,或者说能模拟人的大脑功能。1956年,西蒙、纽厄尔和另一位著名学者约翰·肖(John Cliff Shaw)一起,成功开发了世界上最早的启发式程序“逻辑理论家”LT(1ogic Theorist) ,从而使机器迈出了逻辑推理的第一步。在卡内基-梅隆大学的计算机实验室,西蒙和纽厄尔从分析人类解答数学题的技巧入手,让一些人对各种数学题作周密的思考,要求他们不仅写出求解的答案,而且要说出自己推理的方法和步骤。通过对实例的大量观察,西蒙和纽厄尔广泛收集了人类求解一般性问题的各种方案。他们发现,人们求解数学题时,通常采用试凑的办法。试凑时并不一定列出所有的可能性,而是用逻辑推理来迅速缩小搜索的范围。人类证明数学定理也有类似的思维规律,通过把一个复杂问题分解成几个简单的子问题,以及利用已知常量代入未知变量等方法,用已知的公理、定理或解题规则进行试探性推理,直到所有的子问题最终都变成已知的,然后根据记忆中的公理和已被证明的定理,运用代入法、替换法来解决子问题,最终解决整个问题。人类求证数学定理同样也是一种启发式搜索,与电脑下棋的原理有异曲同工之妙。在这一基础上,他们利用“逻辑理论家”程序向数学定理发起挑战,建立了机器证明数学定理的启发式搜索法,并用计算机证明了罗素、怀特海的数学名著《数学原理》一书第二章52个定理中的38个定理(1963年,经过改进的“逻辑理论家”程序在一部更大的电脑上,最终完成了第二章全部52条数学定理的证明)。基于这一成功,西蒙和纽厄尔把“逻辑理论家”程序扩充到了人类求解一般问题的过程,设想用机器模拟具有普遍意义的人类思维活动。“逻辑理论家”受到了人们的高度评价,认为它是用计算机探讨人类智力活动的第一个真正意义上的成果,也是图灵关于机器可以具有智能这一论断的第一个实际的证明。在开发“逻辑理论家”程序的过程中,西蒙首次提出并成功应用了“链表”(list)作为基本的数据结构,并设计与实现了表处理语言IPL (Information Processing Language)。在人工智能的历史上,IPL是所有表处理语言的始祖,也是最早使用递归子程序的语言。其基本元素是符号,并首次引进表处理方法。IPL最基本的数据结构是表结构,可用以代替存储地址或有规则的数组,这有助于将程序员从繁琐的细节中释放出来而在更高的水平上思考问题。IPL的另一特点是引进了生成器,每次产生一个值,然后挂起,等待被调用,在调用时从被挂起的地方开始。早期的很多人工智能程序都是用表处理语言编制而成的。表处理语言本身也因此经历了一个发展与完善的过程,其最后一个版本IPLⅤ可以处理树形结构的表。1956年夏天,数十名来自数学、心理学、神经学、计算机科学与电气工程等各领域的学者聚集在位于美国新罕布什尔州汉诺威市的达特茅斯学院,讨论如何用计算机模拟人的行为,并根据麦卡锡(J.McCarthy,1971年图灵奖获得者)的建议,正式把这一学科领域命名为“人工智能”(Artificial Intelligence)。会议的召开标志着人工智能这一学科正式诞生。赫伯特·西蒙指出,人工智能的研究是学会怎样编制计算机程序来完成人类机智的行为。西蒙带到会议上去的“逻辑理论家”是当时惟一可以工作的人工智能软件,引起了与会代表的极大兴趣与关注。因此,西蒙、纽厄尔,以及达特茅斯会议的发起人麦卡锡和明斯基(M.L.Minsky,1969年图灵奖获得者),被公认为是人工智能的奠基人。他们四人于1960年组成了第一个人工智能研究小组,有力地推动了人工智能的发展。1960年,西蒙夫妇做了一个有趣的心理学实验,这个实验表明人类解决问题的过程是一个搜索的过程,其效率取决于启发式函数(heuristic function)。在这个实验的基础上,西蒙、纽厄尔和肖又一次成功地合作开发了能解答11种类型不同问题的“通用问题求解系统”GPS(General Problem Solver)。这一求解系统的基本原理,是找出目标要求与当前态势之间的差异,选择有利于消除差异的操作,以逐步缩小差异并最终达到目标。西蒙曾多次强调指出,科学发现只是一种特殊类型的问题求解,因此也可以用计算机程序来实现。1976~1983年间,西蒙和兰利(Pat W.Langley)、布拉茨霍夫(Gary L.Bradshaw)合作,设计了有六个版本的BACON系统发现程序,重新发现了一系列著名的物理、化学定律,证明了西蒙的上述论点。从而开拓出人工智能中“问题求解”的一大领域。西蒙转向计算机技术后,就一直研究计算机下棋问题。1966年,西蒙、纽厄尔和贝洛尔(Baylor)合作,开发了最早的下棋程序MATER。1997年,IBM的“深蓝”(Deep Blue)计算机打败了白俄罗斯的国际特级大师卡斯帕罗夫以后,81岁的西蒙还和俄亥俄州立大学的人工智能专家T.Munakata一起,在《ACM通信》杂志的8月号上发表了《人工智能给我们的教训》(AI Lessons)一文,对此事进行了评论,指出一个运行于计算机上的国际象棋程序拥有2600分等级分,相当于白俄罗斯国际象棋世界冠军卡斯帕罗夫的级别水平。西蒙在人工智能方面的另一大贡献,是发展与完善了语义网络的概念和方法,把它作为知识表示(knowledge representation)的一种通用手段,并取得了很大成功。在知识表示方法中,语义网络(semantic network)是—种重要而有效的方法。这种表示法是奎林(M.R.Quillian)在20世纪60年代后期提出来的,作为人类联想记忆的一个显示心理学模型。奎林在开发TLC系统(Teachable Language Comprehender)中用它来描述英语的词义,模拟人类的联想记忆。但用语义网络作为一般的知识表示方法,则是西蒙在1970年研究自然语言理解的过程中把它的各种概念基本明确下来的。20世纪70年代中期,西蒙和CAD专家依斯特曼(C.M.Eastman) 合作,研究住宅的自动空间综合,不仅开了“智能大厦”(intelligent building)的先河,还成为智能CAD即ICAD研究的开端。起源于20世纪60年代末70年代初,当前受到极大重视的决策支持系统DSS(Decision Support System),其概念的核心是关于决策模式的理论,而这个理论也是由西蒙奠定基础的。在不确定条件下的决策模型除了贝叶斯模型外,另一个比较重要的理论模型是采用Von Neumann-Morgenstern效用函数的期望值最大模型。西蒙在《人的模型》一书中形成了电子计算机能模拟人的思维的思想,开始了人工智能的系列研究。针对效用函数的期望值最大模型,西蒙提出了有限合理性模型。有限合理性模型的基本思想是:首先,所有的决策者涉及到的是一个有限的范围;其次,我们不能对将来给出一个概率值,但最好有一个关于将来事件的大致概念;第三,如果后者不以前者为转移的话,我们在一个领域中的愿望可能与在另一个领域中的愿望完全不同;最后,我们更注重搜集信息而不是分析需求,在收集信息后,最通常的抉择是基于直觉。基于西蒙关于决策模式的理论,凯恩(P. G. Keen)提出了一种设计方法,称为“自适应法”(self-adaptive method),把决策支持系统当成一种自适应系统,由DSS应用系统、DSS生成系统和DSS工具三个技术层次组成,由决策者运行,且能适应时间的变化。西蒙曾称赞这样的系统“能适应三个时间范围内的各种变化,即在短期运行中,系统能在一个相对狭窄的范围内寻求答案;在中期运行中,系统能通过修改其功能和活动而学会适应;在长期运行中,系统能发展到适应差别极大的行为风格和功能”。这些研究,使计算机技术与管理决策紧密连接起来。
对计算机发展做出重大贡献的科学家
1、冯·诺依曼(John Von Neumann , 1903-1957):美籍匈牙利裔科学家、数学家,被誉为“电子计算机之父”。1945年,冯·诺依曼首先提出了“存储程序”的概念和二进制原理,后来,人们把利用这种概念和原理设计的电子计算机系统统称为“冯.诺曼型结构”计算机。冯.诺曼结构的处理器使用同一个存储器,经由同一个总线传输。冯·诺依曼的主要贡献就是提出并实现了“存储程序”的概念。由于指令和数据都是二进制码,指令和操作数的地址又密切相关,因此,当初选择这种结构是自然的。但是,这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。
2、阿兰·麦席森·图灵(Alan Mathison Turing,1912.6.23—1954.6.7),英国数学家、逻辑学家,他被视为计算机之父。1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题中的应用”。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,成为划时代之作。也正是这篇文章,为图灵赢得了“人工智能之父”的桂冠。
3、克劳德·香农(Claude Elwood Shannon,1916-2001)1916年4月30日诞生于美国密西根州的Petoskey。科学家,现代信息论的著名创始人,信息论及数字通信时代的奠基人。1948年香农长达数十页的论文“通信的数学理论”成了信息论正式诞生的里程碑。在他的通信数学模型中,清楚地提出信息的度量问题,他把哈特利的公式扩大到概率pi不同的情况,得到了著名的计算信息熵H的公式:H=∑-pi log pi。如果计算中的对数log是以2为底的,那么计算出来的信息熵就以比特(bit)为单位。今天在计算机和通信中广泛使用的字节(Byte)、KB、MB、GB等词都是从比特演化而来。“比特”的出现标志着人类知道了如何计量信息量。香农的信息论为明确什么是信息量概念作出决定性的贡献。
4、赫伯特?亚历山大?西蒙(1916年6月15日--2001年2月9日 Herbert Alexander Simon ):美国科学家,他是20世纪科学界的一位奇特的通才,在众多的领域深刻地影响着我们这个世代。他学识渊博、兴趣广泛,研究工作涉及经济学、政治学、管理学、社会学、心理学、运筹学、计算机科学、认知科学、人工智能等广大领域,并做出了创造性贡献,在国际上获得了诸多特殊荣誉。1956年夏天 数十名来自数学、心理学、神经学、计算机科学与电气工程等各种领域的学者聚集在位于美国新罕布什尔州汉诺威市的达特茅斯学院,,讨论如何用计算机模拟人的智能,并根据麦卡锡的建议,正式把这一学科领域命名为“人工智能”。西蒙参加了这个具有历史意义的会议,而且他们带到会议上去的“逻辑理论家”是当时唯一可以工作的人工智能软件,引起了与会代表的极大兴趣与关注。因此,西蒙、纽厄尔以及达特茅斯会议的发起人麦卡锡和明斯基被公认为是人工智能的奠基人,被称为“人工智能之父”。1957年 西蒙与别人合作开发了IPL语言(1nformation Processing Language)。在AI的历史上,这是最早的一种AI程序设计语言,其基本元素是符号,并首次引进表处理方法。1966年 西蒙、纽厄尔和贝洛尔(Baylor)合作,开发了最早的下棋程序之一MATER。 1970年 在研究自然语言理解的过程中,西蒙发展与完善了语义网络的概念和方法,把它作为知识表示(knowledge representation)的一种通用手段,并取得很大成功。1972年7月 作为美国计算机科学家代表团成员之一第一次到中国访问。之后又9次来华访问。1975年 他和艾伦?纽厄尔因为在人工智能、人类心里识别和列表处理等方面进行的基础研究,荣获计算机科学最高奖——图灵奖。1976年 西蒙和纽厄尔给“物理符号系统” 下了定义,提出了“物理符号系统假说”PSSH(Physical Symbol System Hypothesis),成为人工智能中影响最大的符号主义学派的创始人和代表人物,而这一学说则鼓励着人们对人工智能进行伟大的探索。这也是两人在人工智能中做出的最基本的贡献。1976—1983年间 西蒙和兰利(Pat W.Langley)、布拉茨霍夫(Gary L.Bradshaw)合作,设计了有6个版本的BACON系统发现程序,重新发现了一系列著名的物理、化学定律,证明了西蒙曾多次强调的论点即科学发现只是一种特殊类型的问题求解,因此也可以用计算机程序实现。
5、巨型机之父”西蒙·克雷。谁最早提出了超级计算机的概念?至今存在很大的争议。有人说是最早开发集成电路的肖克利在自己的工作日记中透露了超级计算机的构思,也有人说是当时为军方服务的LawrenceLivermore国家实验室的想法。但从真正意义上来说,研发出符合超级计算机定义产品的人应该是西蒙·克雷(S. Cray)博士,此人后来被西方称为“巨型机之父”。西蒙·克雷1925年9月出生在美国威斯康星州的一个工程师世家。克雷先后在工程研究学会和雷明顿·兰德公司从事计算机研究。在那里,他设计出他的第一台计算机ERA1101。1963年8月,克雷终于从“密林”深处复出,把一台被他亲切称作“简单的蠢东西” —— CDC6600超级计算机公布于世。CDC6600是真正意义上的超级计算机,共安装了35万个晶体管,运算速度为1Mflops。至1969年,克雷研制的CDC6600以及改进型CDC7600巨型机共售出150余台。(美国能源部劳伦斯·伯克利国家实验室对超级计算机的定义是由八个或更多的计算节点组成、作为单个高性能机器工作的集群。通俗点讲,超级计算机就是能够进行大规模、超速运算的计算机。)
对计算机发展做出重大贡献的科学家
邓福斌,中国湖北通山人,1976年10月出生,发明了世界网络的核心技术,也即搜索,创造了当代世界网络的盛世繁华和传奇!
邓福斌,中国湖北通山人,1976年10月出生,发明了世界网络的核心技术,也即搜索,创造了当代世界网络的盛世繁华和传奇!
1、冯·诺依曼(John Von Neumann , 1903-1957):美籍匈牙利裔科学家、数学家,被誉为“电子计算机之父”。1945年,冯·诺依曼首先提出了“存储程序”的概念和二进制原理,后来,人们把利用这种概念和原理设计的电子计算机系统统称为“冯.诺曼型结构”计算机。冯.诺曼结构的处理器使用同一个存储器,经由同一个总线传输。冯·诺依曼的主要贡献就是提出并实现了“存储程序”的概念。由于指令和数据都是二进制码,指令和操作数的地址又密切相关,因此,当初选择这种结构是自然的。但是,这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。
2、阿兰·麦席森·图灵(Alan Mathison Turing,1912.6.23—1954.6.7),英国数学家、逻辑学家,他被视为计算机之父。1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题中的应用”。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,成为划时代之作。也正是这篇文章,为图灵赢得了“人工智能之父”的桂冠。
3、克劳德·香农(Claude Elwood Shannon,1916-2001)1916年4月30日诞生于美国密西根州的Petoskey。科学家,现代信息论的著名创始人,信息论及数字通信时代的奠基人。1948年香农长达数十页的论文“通信的数学理论”成了信息论正式诞生的里程碑。在他的通信数学模型中,清楚地提出信息的度量问题,他把哈特利的公式扩大到概率pi不同的情况,得到了著名的计算信息熵H的公式:H=∑-pi log pi。如果计算中的对数log是以2为底的,那么计算出来的信息熵就以比特(bit)为单位。今天在计算机和通信中广泛使用的字节(Byte)、KB、MB、GB等词都是从比特演化而来。“比特”的出现标志着人类知道了如何计量信息量。香农的信息论为明确什么是信息量概念作出决定性的贡献。
4、赫伯特?亚历山大?西蒙(1916年6月15日--2001年2月9日 Herbert Alexander Simon ):美国科学家,他是20世纪科学界的一位奇特的通才,在众多的领域深刻地影响着我们这个世代。他学识渊博、兴趣广泛,研究工作涉及经济学、政治学、管理学、社会学、心理学、运筹学、计算机科学、认知科学、人工智能等广大领域,并做出了创造性贡献,在国际上获得了诸多特殊荣誉。1956年夏天 数十名来自数学、心理学、神经学、计算机科学与电气工程等各种领域的学者聚集在位于美国新罕布什尔州汉诺威市的达特茅斯学院,,讨论如何用计算机模拟人的智能,并根据麦卡锡的建议,正式把这一学科领域命名为“人工智能”。西蒙参加了这个具有历史意义的会议,而且他们带到会议上去的“逻辑理论家”是当时唯一可以工作的人工智能软件,引起了与会代表的极大兴趣与关注。因此,西蒙、纽厄尔以及达特茅斯会议的发起人麦卡锡和明斯基被公认为是人工智能的奠基人,被称为“人工智能之父”。1957年 西蒙与别人合作开发了IPL语言(1nformation Processing Language)。在AI的历史上,这是最早的一种AI程序设计语言,其基本元素是符号,并首次引进表处理方法。1966年 西蒙、纽厄尔和贝洛尔(Baylor)合作,开发了最早的下棋程序之一MATER。 1970年 在研究自然语言理解的过程中,西蒙发展与完善了语义网络的概念和方法,把它作为知识表示(knowledge representation)的一种通用手段,并取得很大成功。1972年7月 作为美国计算机科学家代表团成员之一第一次到中国访问。之后又9次来华访问。1975年 他和艾伦?纽厄尔因为在人工智能、人类心里识别和列表处理等方面进行的基础研究,荣获计算机科学最高奖——图灵奖。1976年 西蒙和纽厄尔给“物理符号系统” 下了定义,提出了“物理符号系统假说”PSSH(Physical Symbol System Hypothesis),成为人工智能中影响最大的符号主义学派的创始人和代表人物,而这一学说则鼓励着人们对人工智能进行伟大的探索。这也是两人在人工智能中做出的最基本的贡献。1976—1983年间 西蒙和兰利(Pat W.Langley)、布拉茨霍夫(Gary L.Bradshaw)合作,设计了有6个版本的BACON系统发现程序,重新发现了一系列著名的物理、化学定律,证明了西蒙曾多次强调的论点即科学发现只是一种特殊类型的问题求解,因此也可以用计算机程序实现。
5、巨型机之父”西蒙·克雷。谁最早提出了超级计算机的概念?至今存在很大的争议。有人说是最早开发集成电路的肖克利在自己的工作日记中透露了超级计算机的构思,也有人说是当时为军方服务的LawrenceLivermore国家实验室的想法。但从真正意义上来说,研发出符合超级计算机定义产品的人应该是西蒙·克雷(S. Cray)博士,此人后来被西方称为“巨型机之父”。西蒙·克雷1925年9月出生在美国威斯康星州的一个工程师世家。克雷先后在工程研究学会和雷明顿·兰德公司从事计算机研究。在那里,他设计出他的第一台计算机ERA1101。1963年8月,克雷终于从“密林”深处复出,把一台被他亲切称作“简单的蠢东西” —— CDC6600超级计算机公布于世。CDC6600是真正意义上的超级计算机,共安装了35万个晶体管,运算速度为1Mflops。至1969年,克雷研制的CDC6600以及改进型CDC7600巨型机共售出150余台。(美国能源部劳伦斯·伯克利国家实验室对超级计算机的定义是由八个或更多的计算节点组成、作为单个高性能机器工作的集群。通俗点讲,超级计算机就是能够进行大规模、超速运算的计算机。)
对计算机发展做出重大贡献的科学家
邓福斌,中国湖北通山人,1976年10月出生,发明了世界网络的核心技术,也即搜索,创造了当代世界网络的盛世繁华和传奇!
邓福斌,中国湖北通山人,1976年10月出生,发明了世界网络的核心技术,也即搜索,创造了当代世界网络的盛世繁华和传奇!
1、冯·诺依曼(John Von Neumann , 1903-1957):美籍匈牙利裔科学家、数学家,被誉为“电子计算机之父”。1945年,冯·诺依曼首先提出了“存储程序”的概念和二进制原理,后来,人们把利用这种概念和原理设计的电子计算机系统统称为“冯.诺曼型结构”计算机。冯.诺曼结构的处理器使用同一个存储器,经由同一个总线传输。冯·诺依曼的主要贡献就是提出并实现了“存储程序”的概念。由于指令和数据都是二进制码,指令和操作数的地址又密切相关,因此,当初选择这种结构是自然的。但是,这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。
2、阿兰·麦席森·图灵(Alan Mathison Turing,1912.6.23—1954.6.7),英国数学家、逻辑学家,他被视为计算机之父。1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题中的应用”。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,成为划时代之作。也正是这篇文章,为图灵赢得了“人工智能之父”的桂冠。
3、克劳德·香农(Claude Elwood Shannon,1916-2001)1916年4月30日诞生于美国密西根州的Petoskey。科学家,现代信息论的著名创始人,信息论及数字通信时代的奠基人。1948年香农长达数十页的论文“通信的数学理论”成了信息论正式诞生的里程碑。在他的通信数学模型中,清楚地提出信息的度量问题,他把哈特利的公式扩大到概率pi不同的情况,得到了著名的计算信息熵H的公式:H=∑-pi log pi。如果计算中的对数log是以2为底的,那么计算出来的信息熵就以比特(bit)为单位。今天在计算机和通信中广泛使用的字节(Byte)、KB、MB、GB等词都是从比特演化而来。“比特”的出现标志着人类知道了如何计量信息量。香农的信息论为明确什么是信息量概念作出决定性的贡献。
4、赫伯特?亚历山大?西蒙(1916年6月15日--2001年2月9日 Herbert Alexander Simon ):美国科学家,他是20世纪科学界的一位奇特的通才,在众多的领域深刻地影响着我们这个世代。他学识渊博、兴趣广泛,研究工作涉及经济学、政治学、管理学、社会学、心理学、运筹学、计算机科学、认知科学、人工智能等广大领域,并做出了创造性贡献,在国际上获得了诸多特殊荣誉。1956年夏天 数十名来自数学、心理学、神经学、计算机科学与电气工程等各种领域的学者聚集在位于美国新罕布什尔州汉诺威市的达特茅斯学院,,讨论如何用计算机模拟人的智能,并根据麦卡锡的建议,正式把这一学科领域命名为“人工智能”。西蒙参加了这个具有历史意义的会议,而且他们带到会议上去的“逻辑理论家”是当时唯一可以工作的人工智能软件,引起了与会代表的极大兴趣与关注。因此,西蒙、纽厄尔以及达特茅斯会议的发起人麦卡锡和明斯基被公认为是人工智能的奠基人,被称为“人工智能之父”。1957年 西蒙与别人合作开发了IPL语言(1nformation Processing Language)。在AI的历史上,这是最早的一种AI程序设计语言,其基本元素是符号,并首次引进表处理方法。1966年 西蒙、纽厄尔和贝洛尔(Baylor)合作,开发了最早的下棋程序之一MATER。 1970年 在研究自然语言理解的过程中,西蒙发展与完善了语义网络的概念和方法,把它作为知识表示(knowledge representation)的一种通用手段,并取得很大成功。1972年7月 作为美国计算机科学家代表团成员之一第一次到中国访问。之后又9次来华访问。1975年 他和艾伦?纽厄尔因为在人工智能、人类心里识别和列表处理等方面进行的基础研究,荣获计算机科学最高奖——图灵奖。1976年 西蒙和纽厄尔给“物理符号系统” 下了定义,提出了“物理符号系统假说”PSSH(Physical Symbol System Hypothesis),成为人工智能中影响最大的符号主义学派的创始人和代表人物,而这一学说则鼓励着人们对人工智能进行伟大的探索。这也是两人在人工智能中做出的最基本的贡献。1976—1983年间 西蒙和兰利(Pat W.Langley)、布拉茨霍夫(Gary L.Bradshaw)合作,设计了有6个版本的BACON系统发现程序,重新发现了一系列著名的物理、化学定律,证明了西蒙曾多次强调的论点即科学发现只是一种特殊类型的问题求解,因此也可以用计算机程序实现。
5、巨型机之父”西蒙·克雷。谁最早提出了超级计算机的概念?至今存在很大的争议。有人说是最早开发集成电路的肖克利在自己的工作日记中透露了超级计算机的构思,也有人说是当时为军方服务的LawrenceLivermore国家实验室的想法。但从真正意义上来说,研发出符合超级计算机定义产品的人应该是西蒙·克雷(S. Cray)博士,此人后来被西方称为“巨型机之父”。西蒙·克雷1925年9月出生在美国威斯康星州的一个工程师世家。克雷先后在工程研究学会和雷明顿·兰德公司从事计算机研究。在那里,他设计出他的第一台计算机ERA1101。1963年8月,克雷终于从“密林”深处复出,把一台被他亲切称作“简单的蠢东西” —— CDC6600超级计算机公布于世。CDC6600是真正意义上的超级计算机,共安装了35万个晶体管,运算速度为1Mflops。至1969年,克雷研制的CDC6600以及改进型CDC7600巨型机共售出150余台。(美国能源部劳伦斯·伯克利国家实验室对超级计算机的定义是由八个或更多的计算节点组成、作为单个高性能机器工作的集群。通俗点讲,超级计算机就是能够进行大规模、超速运算的计算机。)