本文目录一览:
- 1、人工智能诞生于什么地方
- 2、人工智能(ai)概念最早1956年在达特茅斯会议上提出。()
- 3、人工智能学科诞生于什么时期
- 4、人工智能学科诞生于什么时?
- 5、人工智能概念最早1956年在达特茅斯会议上提出
- 6、达特茅斯会议提出人工智能的概念
- 7、人工智能这个词是谁提出来的
- 8、人工智能是什么?
- 9、人工智能是否有可能超越人类?
- 10、人工智能Al一词来源于哪个会议?
人工智能诞生于什么地方
人工智能诞生于美国达特茅斯学院。
从计算机教育的角度看,美国达特茅斯学院无愧是普及计算机教育的策源地,因为BASIC语言就诞生于此地,人工智能最早的会议在此间开幕,校园网电子邮件也在此校发端并融入师生的教学和日常生活中。
前任校长,教一年级新生的电脑教授就是电脑BASIC语言的发明人约翰·柯梅尼(JohnKemeny)。在他的任期中,大力在达特茅斯普及电脑,建立起一套全国最完善的电脑系统,把电脑带进从物理到哲学的每一门课程。
达特茅斯的电脑中心不分日夜地开放,所有教室和宿舍里都有与整个校园网路的连线,一向保守的达特茅斯学院在这方面确是走在了美国的最前沿。
1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。
人工智能实现方法
1、人工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法,它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法,它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。
2、遗传算法(GENERIC ALGORITHM,简称GA)和人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)均属后一类型。遗传算法模拟人类或生物的遗传—进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。为了得到相同智能效果,两种方式通常都可使用。
以上内容参考:百度百科-人工智能
人工智能(ai)概念最早1956年在达特茅斯会议上提出。()
人工智能(ai)概念最早1956年在达特茅斯会议上提出,正确。
1956年夏季由一批科学家在美国的达特茅斯大学举办了一次研讨会,会议上同意使用由麦卡锡提出的新术语:人工智能(缩写为AI),标志着人工智能学科的诞生。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。
计算机科学将人工智能研究定义为对“智能代理”的研究:任何感知其环境并采取最优行动使其有机会成功实现目标的设备。
一个更详细的定义将人工智能描述为“一个可以正确解释外部数据,从这些数据中学习,并利用这些学习通过灵活的适应提升实现特定目标和任务的能力的系统。”
“人工智能”分别进入几次阶段,几次低谷阶段的打磨,让“人工智能”在1997年5月11日,IBM的计算机系统“深蓝”战胜了国际象棋世界冠军卡斯帕罗夫,这件事在当时轰动一时。这一步成功以后,IBM研究院进而挑战人工智能的深度问答,这是人工智能发展的一个主要里程。
人工智能学科诞生于什么时期
、人工智能之父——图灵(Alan Turing)提出:机器会思考吗?**如果一台机器能够与人类对话而不被辨别出其机器的身份,那么这台机器具有智能的特征。**同时,图灵还预言创造具有真正智能的机器的可能性。
AI诞生
在1956年达特茅斯学院举行的一次会议上,正式确立了人工智能为研究学科。
2006年达特茅斯会议当事人重聚,左起:Trenchard More、John McCarthy、Marvin Minsky、Oliver Selfridge、Ray Solomonoff
第一次发展高潮(1955年—1974年)
达特茅斯会议之后是大发现的时代。对很多人来讲,这一阶段开发出来的程序堪称神奇:计算机可以解决代数应用题、证明几何定理、学习和使用英语。在众多研究当中,搜索式推理、自然语言、微世界在当时最具影响力。
当时成就
1.人工神经网络在30-50年代被提出,1951年Marvin Minsky制造出第一台神经网络机
2.贝尔曼公式(增强学习雏形)被提出
3.感知器(深度学习雏形)被提出
4.搜索式推理被提出
5.自然语言被提出
6.首次提出人工智能拥有模仿智能的特征,懂得使用语言,懂得形成抽象概念并解决人类现存问题
7.Arthur Samuel在五十年代中期和六十年代初开发的国际象棋程序,棋力已经可以挑战具有相当水平的业余爱好者
8.机器人SHAKEY项目受到了大力宣传,它能够对自己的行为进行“推理”;人们将其视作世界上第一台通用机器人
9.微世界的提出
存在的问题——第一次寒冬
研究学者认为具有完全智能的机器将在二十年内出现并给出了很多预言,如机器将能完成人能做到的一切工作、将制造出一台具有人类平均智能的机器。但很快就打脸了,AI遭遇到瓶颈。由于此前的过于乐观使人们期待过高,当AI研究人员的承诺无法兑现时,公众开始激烈批评AI研究人员,许多机构不断减少对人工智能研究的资助,直至停止拨款。
1.计算机运算能力遭遇瓶颈,无法解决指数型爆炸的复杂计算问题
2.常识和推理需要大量对世界的认识信息,计算机达不到“看懂”和“听懂”的地步
3.无法解决莫拉维克悖论
4.无法解决部分涉及自动规划的逻辑问题
5.神经网络研究学者遭遇冷落
说明:莫拉维克悖论:如果机器像数学天才一样下象棋,那么它能模仿婴儿学习又有多难呢?然而,事实证明这是相当难的。
第二次发展高潮(1980年—1987年)
**“专家系统”**的AI程序开始为全世界的公司所采纳,人工智能研究迎来了新一轮高潮。由于专家系统仅限于一个很小的领域,从而避免了常识问题。“知识处理”随之也成为了主流 AI 研究的焦点。
人工智能学科
学科起源
从学科起源的时间原点来看,人工智能学科以1956年美国达特茅斯学院夏季讨论班为缘起。
人工智能学科,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
发展规划
《新一代人工智能发展规划》明确,启动实施人工智能重大项目、推动人工智能学科建设、布局人工智能创新发展实验区等一系列"中国方案",强化了人工智能基础理论和关键技术研究,促进人工智能与经济社会的高度融合。
学科专业
浙江大学计算机科学与技术学院作为新增的人工智能专业的主管学院,拥有五个一级学科,其中人工智能学科为2018年新设立。
专业学院
2019年4月22日,中国人民大学高瓴人工智能学院成立,高瓴人工智能学院是中国人民大学二级学院,承担人工智能学科的规划与建设,未来将开展本学科和相关交叉学科领域的本、硕、博人才培养和科学研究工作。
“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能学科诞生于什么时?
、人工智能之父——图灵(Alan Turing)提出:机器会思考吗?**如果一台机器能够与人类对话而不被辨别出其机器的身份,那么这台机器具有智能的特征。**同时,图灵还预言创造具有真正智能的机器的可能性。
AI诞生
在1956年达特茅斯学院举行的一次会议上,正式确立了人工智能为研究学科。
2006年达特茅斯会议当事人重聚,左起:Trenchard More、John McCarthy、Marvin Minsky、Oliver Selfridge、Ray Solomonoff
第一次发展高潮(1955年—1974年)
达特茅斯会议之后是大发现的时代。对很多人来讲,这一阶段开发出来的程序堪称神奇:计算机可以解决代数应用题、证明几何定理、学习和使用英语。在众多研究当中,搜索式推理、自然语言、微世界在当时最具影响力。
当时成就
1.人工神经网络在30-50年代被提出,1951年Marvin Minsky制造出第一台神经网络机
2.贝尔曼公式(增强学习雏形)被提出
3.感知器(深度学习雏形)被提出
4.搜索式推理被提出
5.自然语言被提出
6.首次提出人工智能拥有模仿智能的特征,懂得使用语言,懂得形成抽象概念并解决人类现存问题
7.Arthur Samuel在五十年代中期和六十年代初开发的国际象棋程序,棋力已经可以挑战具有相当水平的业余爱好者
8.机器人SHAKEY项目受到了大力宣传,它能够对自己的行为进行“推理”;人们将其视作世界上第一台通用机器人
9.微世界的提出
存在的问题——第一次寒冬
研究学者认为具有完全智能的机器将在二十年内出现并给出了很多预言,如机器将能完成人能做到的一切工作、将制造出一台具有人类平均智能的机器。但很快就打脸了,AI遭遇到瓶颈。由于此前的过于乐观使人们期待过高,当AI研究人员的承诺无法兑现时,公众开始激烈批评AI研究人员,许多机构不断减少对人工智能研究的资助,直至停止拨款。
1.计算机运算能力遭遇瓶颈,无法解决指数型爆炸的复杂计算问题
2.常识和推理需要大量对世界的认识信息,计算机达不到“看懂”和“听懂”的地步
3.无法解决莫拉维克悖论
4.无法解决部分涉及自动规划的逻辑问题
5.神经网络研究学者遭遇冷落
说明:莫拉维克悖论:如果机器像数学天才一样下象棋,那么它能模仿婴儿学习又有多难呢?然而,事实证明这是相当难的。
第二次发展高潮(1980年—1987年)
**“专家系统”**的AI程序开始为全世界的公司所采纳,人工智能研究迎来了新一轮高潮。由于专家系统仅限于一个很小的领域,从而避免了常识问题。“知识处理”随之也成为了主流 AI 研究的焦点。
人工智能概念最早1956年在达特茅斯会议上提出
人工智能概念最早1956年在达特茅斯会议上提出。这句话是正确的。
扩展知识:
达特茅斯会议
1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,约翰·麦卡锡(John McCarthy)、马文·闵斯基(Marvin Minsky,人工智能与认知学专家)、克劳德·香农(Claude Shannon,信息论的创始人)。
艾伦·纽厄尔(Allen Newell,计算机科学家)、赫伯特·西蒙(Herbert Simon,诺贝尔经济学奖得主)等科学家正聚在一起,讨论着一个完全不食人间烟火的主题:用机器来模仿人类学习以及其他方面的智能。
会议足足开了两个月的时间,虽然大家没有达成普遍的共识,但是却为会议讨论的内容起了一个名字:人工智能。因此,1956年也就成为了人工智能元年。
人工智能需要学习的基础内容:
1、认知与神经科学:具体包括认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程等课程。
2、人工智能伦理:具体包括人工智能、社会与人文,人工智能哲学基础与伦理等课程。
3、科学和工程:需要脑科学、神经科学、认知心理学、信息科学等相关学科的配合。
4、先进机器人学:具体包括先进机器人控制、认知机器人、机器人规划与学习、仿生机器人等课程。
5、人工智能平台与工具:具体包括群体智能与自主系统、无人驾驶技术与系统实现、游戏设计与开发、计算机图形学、虚拟现实与增强现实等课程。
6、人工智能核心:具体包括人工智能的现代方法、问题表达与求解、人工智能的现代方法、机器学习、自然语言处理、计算机视觉等课程。
达特茅斯会议提出人工智能的概念
达特茅斯会议提出人工智能的概念如下:
现在一说起人工智能的起源,公认是1956年的达特茅斯会议。殊不知还有个前戏,1955年,美国西部计算机联合大会(Western Joint Computer Conference)在洛杉矶召开,会中还套了个小会:学习机讨论会(Session on Learning Machine)。讨论会的参加者中有两个人参加了第二年的达特茅斯会议。
他们是塞弗里奇(Oliver Selfridge)和纽厄尔(Allen Newell)。塞弗里奇发表了一篇模式识别的文章,而纽厄尔则探讨了计算机下棋,他们分别代表两派观点。讨论会的主持人是神经网络的鼻祖之一皮茨(Walter Pitts)。
他最后总结时说:“(一派人)企图模拟神经系统,而纽厄尔则企图模拟心智(mind)……但殊途同归。”这预示了人工智能随后几十年关于“结构与功能”两个阶级、两条路线的斗争。开聊达特茅斯会议之前,先说说 6 个最关键的人。首先,会议的召集者麦卡锡(John McCarthy)当时是达特茅斯学院的数学系助理教授。
1954年,达特茅斯学院数学系同时有4位教授退休,这对达特茅斯这样的小学校而言真是不可承受之轻。刚上任的年轻系主任克门尼(John Kemeny)之前两年才在普林斯顿大学逻辑学家丘奇(Alonzo Church)门下取得了逻辑学博士,于是跑到母校求援。
人工智能这个词是谁提出来的
最早提出人工智能一词的人是约翰·麦卡锡
约翰·麦卡锡是公认的“人工智能之父”,他在攻读博士期间首次尝试在机器上模拟人工智能,并于1956年首次提出“人工智能”的概念。
1955年,麦卡锡联合申农、马文·明斯基、纳撒尼尔罗彻斯特,一起发起了达特茅斯项目。该计划的目标是基于我们能够精确、全面地描述人类智能中的学习等特征,并制造出机器模拟之这一构想,继续阔步前进。
1956年夏天,人工智能研讨会在达特茅斯学院举办,麦卡锡在会上首次提出了“人工智能AI”的概念。
人工智能(Artificial Intelligence),是一个以计算机科学(Computer Science)为基础。
由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
为服务国家战略需求。
积极推动新兴交叉学科发展,促进高层次复合型人才培养,中国科学技术大学(中科大)将新增设立人工智能一级交叉学科博士学位授权点和量子科学与技术一级交叉学科博士学位授权点以及临床医学专业学位博士授权点。
国务院学位委员会正式发布了《2019年学位授权自主审核单位增列的学位授权点清单》,华中科技大学(华中大)人工智能与自动化学院牵头申报的人工智能交叉学科博士学位授权点成功获批。
研究方向包括计算机视觉与感知智能,机器学习与计算智能,认知计算与类脑智能,无人系统与群体智能,人机共融与智能控制,以及包括智慧医疗、智慧交通在内的人工智能+X等领域的研究。
博士生突出提高原始创新能力,具有较强的系统构建能力和一定的科研组织能力,能够在解决行业企业重大工程实践中凝练科学问题、创新研究方法、转化先进技术,深入开展多领域交叉创新应用和开展学术交流。
能够承担高校及研究机构的教学科研工作、从事人工智能工程技术项目管理工作等。
硕士生突出提高综合应用能力,具有人工智能系统的设计、实现、测试和应用验证能力,以及良好的职业素养和沟通协作能力,能够综合运用多学科理论技术解决行业企业智能化面临的实际问题。
人工智能是什么?
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
人工智能(Artificial Intelligence,简称 AI)是一门跨学科领域,旨在研究、开发和应用能够模拟、扩展和辅助人类智能的计算机系统。人工智能的主要目标是让计算机或其他类型的机器能够模仿、模拟或者超越人类的认知、推理、学习、感知、交流和创造等能力。
人工智能可以分为两大类:
弱人工智能(Narrow AI):也称为特定人工智能或应用人工智能,是专门针对某一特定任务或领域设计的智能系统。这些系统通常只能完成特定任务,而不能泛化到其他任务或领域。例如,语音识别、图像识别、推荐系统等。
强人工智能(AGI,Artificial General Intelligence):指具有广泛认知能力和泛化能力的人工智能系统,能够像人类一样在各种不同任务和领域中表现出智能。强人工智能目前尚未实现,仍然是研究和探索的目标。
人工智能的发展和应用涉及许多技术和方法,如机器学习(Machine Learning,尤其是深度学习,Deep Learning)、知识表示与推理(Knowledge Representation and Reasoning)、自然语言处理(Natural Language Processing)、计算机视觉(Computer Vision)、智能机器人(Intelligent Robotics)等。
人工智能已经在各个领域取得了显著的成果和广泛的应用,如医疗、金融、教育、交通、工业生产等。然而,人工智能的发展仍面临诸多挑战,包括技术突破、伦理道德、法律法规、数据隐私和安全等问题。
人工智能(Artificial Intelligence,简称 AI)是一种利用计算机技术实现的智能化系统,它可以模拟和扩展人类的智能能力,包括感知、认知、学习、推理、判断、规划、决策等方面。
人工智能的发展历程可以分为以下几个阶段:
符号推理阶段:早期人工智能主要基于符号推理技术,通过编写程序和规则来模拟人类的推理过程,例如专家系统、知识库系统等。
机器学习阶段:随着数据量的增大和计算能力的提升,人工智能逐渐转向基于数据和模型的机器学习技术,例如神经网络、决策树、支持向量机等。
深度学习阶段:近年来,深度学习成为人工智能领域的主流技术,它基于多层神经网络模型,通过大量数据训练,实现对复杂数据的自动分类、识别、生成等能力。
人工智能已经被广泛应用于各个领域,例如自然语言处理、图像识别、语音识别、智能机器人、智能推荐、自动驾驶、智慧医疗等。未来,人工智能将继续发挥重要的作用,推动人类社会的智能化和数字化进程。
人工智能,是指由人工制造出来的系统所表现出来的智能。通常人工智能是指通过普通计算机实现的智能,同时也指研究这样的智能系统是否能够实现,以及如何实现的科学领域。
从实际应用层面来理解的话,人工智能是研究如何用计算机软件和硬件去实现Agent的感知、决策与智能行为的一种技术。
技术研究
用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。
除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。top域名认为人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能(Artificial Intelligence,AI)是指计算机像人一样拥有智能能力,是一个融合计算机科学、统计学、脑神经学和社会科学的前沿综合学科,可以代替人类实现识别、认知,分析和决策等多种功能。如当你说一句话时,机器能够识别成文字,并理解你话的意思,进行分析和对话等。
人工智能的起源:人工智能在五六十年代时正式提出,1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙一起,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点。巧合的是,同样是在1950年,被称为“计算机之父”的阿兰·图灵提出了一个举世瞩目的想法——图灵测试。按照图灵的设想:如果一台机器能够与人类开展对话而不能被辨别出机器身份,那么这台机器就具有智能。而就在这一年,图灵还大胆预言了真正具备智能机器的可行性。
1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。后来,这被人们看做是人工智能正式诞生的标志。就在这次会议后不久,麦卡锡从达特茅斯搬到了MIT。同年,明斯基也搬到了这里,之后两人共同创建了世界上第一座人工智能实验室——MIT AI LAB实验室。值得追的是,茅斯会议正式确立了AI这一术语,并且开始从学术角度对AI展开了严肃而精专的研究。在那之后不久,最早的一批人工智能学者和技术开始涌现。达特茅斯会议被广泛认为是人工智能诞生的标志,从此人工智能走上了快速发展的道路。
人工智能的第一次高峰 在1956年的这次会议之后,人工智能迎来了属于它的第一段Happy Time。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。”因此,人工智能项目停滞不前,但却让一些人有机可乘,1973年Lighthill针对英国AI研究状况的报告。批评了AI在实现“宏伟目标”上的失败。由此,人工智能遭遇了长达6年的科研深渊。
人工智能是否有可能超越人类?
人工智能不可能超越人类大脑。
计算机的能力已经被很好地定义了,但我们离理解人脑的能力还有很长的路要走。从根本上说,机器的智能和大脑的认知能力,都是建立在信息的存储和电流传输的基础上,这些信息和电流是通过高度复杂的结构传导。
在机器中,这些信号以光速流动,而在大脑中,轴突的脉冲传导速度在0.2-120米/秒之间。目前,超级计算机的运算能力已经接近人脑(每秒几千万亿次),但代价是大约1000万瓦的功耗,而人脑只要20瓦,不得不承认人脑的高效。
大脑的高效要归功于它的卓越设计,使其能在相同的单元、神经元和突触中存储和处理信息。另外,如果把神经元比作计算机的核心,那么大脑在核的数量上明显占有优势,最先进的超级计算机拥有1000多万个核心,而大脑拥有近1000亿个神经元。
在神经科学中,大多数研究都是为了理解和预防年龄和疾病引起的脑功能退化,而对于提高整体处理能力和正常人类神经系统功能的研究相对较少。
通过调整基本的功能参数来增强人类的脑力,可能会对人工智能的崛起带来的生存风险提供足够的平衡。
在发达的大脑中,对架构的重大改进在不久的将来几乎不可能实现;然而,对当前的神经科学来说,暂时甚至永久地提高大脑的处理速度还是有可能的。
大脑的认知能力主要通过冲动传导在轴突和突触传递来表现,这些功能的速度是处理能力的关键,在大脑中却是高度可变的。通过分子操作最大化甚至增强这些参数可以显著提高整体处理速度,从而提高认知功能。
按现在的科技这样发展下去,人工智能是有可能超越人类的。
1956年夏季,在美国达特茅斯学院举行的一次重要会议上,以麦卡赛、明斯基、罗切斯特和申农等为首的科学家共同研究和探讨了用机器模拟智能的一系列问题。
首次提出了“人工智能”这一术语,它标志着人工智能这门新兴学科的正式诞生。此后,人工智能在发展历史上经历了多次高潮和低潮阶段。
在1956年人工智能被提出后,研究者们就大胆地提出乐观的预言,达特茅斯会议的参与者之一赫伯特·西蒙(Herbert Simon)还做出了更具体的预测:10年内计算机将成为国际象棋冠军,并且机器将证明一个重要的数学定理。
西蒙等人过于自信,其预言没有在预测的时间里实现,而且远远没有达到。这些失败给人工智能的声誉造成重大伤害。
1971年,英国剑桥大学数学家詹姆士(James)按照英国政府的旨意,发表了一份关于人工智能的综合报告,声称“人工智能研究就算不是骗局,也是庸人自扰”。
在这个报告的影响下,英国政府削减了人工智能的研究经费,解散了人工智能研究机构。人工智能的研究热情第一次被泼了冷水。
20世纪90年代,以日本第五代机器人研发失败和神经网络一直没有突破为代表,人工智能进入了第二个冬天。
直到21世纪初,深度学习与互联网大数据结合才使人工智能又一次迎来新的春天。在阿尔法围棋等大量突破性成果涌现之后,人类对机器(AI)能否超越人类的问题又重新燃起了热情。狂热的情绪背后甚至产生了人工智能威胁论。
谷歌技术总监、《奇点临近》的作者雷·库兹韦尔(Ray Kurzweil)预言人工智能将超过人类智能。他在书中写道,“由于技术发展呈现指数级增长,机器能模拟大脑的新皮质。
到2029年,机器将达到人类的智能水平;到2045年,人与机器将深度融合,那将标志着奇点时刻的到来。”除此以外,支持人工智能威胁论的代表人物还包括著名物理学家霍金、微软创始人比尔·盖茨、特斯拉CEO马斯克等。
2014年12月2日,霍金在接受BBC采访时表示,运用人工智能技术制造能够独立思考的机器将威胁人类的生存。霍金说:“它自己就动起来了,还能以前所未有的超快速度重新设计自己。人类呢,要受到缓慢的生物进化的限制,根本没有竞争力,会被超越的。”
特斯拉CEO马斯克对待人工智能的态度比较极端,2014年8月,他在推特上推荐尼克·波斯特洛姆的著作《超级智能:路线图、危险性与应对策略》时写道:“我们需要重点关注人工智能,它的潜在危险超过核武器。”
2017年10月,日本著名风险投资人孙正义在世界移动大会2017上表示,他认为机器人将变得比人类更聪明,在大约30年的时间里,AI的智商将有望超过1万点。相比之下,人类的平均智商是100点,天才可能达到200点。
孙正义说:“奇点是人类大脑将被超越的时刻,这是个临界点和交叉点。人工智能和计算机智能将超越人类大脑,这在21世纪肯定会发生。我想说的是,无须更多的辩论,也无须更多怀疑。”
在人工智能威胁论热度日益高涨的情况下,人工智能领域的科学家对人工智能威胁论提出了反对意见。2014年4月,脸书人工智能实验室主任,纽约大学计算机科学教授杨立昆在接受《波普杂志》采访时发表了对人工智能威胁论的看法。
他认为人工智能的研究者在之前很长的一段时间都低估了制造智能机器的难度。人工智能的每一个新浪潮,都会经历这么一段从盲目乐观到不理智最后到沮丧的阶段。
杨立昆提出:很多人觉得人工智能的进展是个指数曲线,其实它是个S形曲线,S形曲线刚开始的时候跟指数曲线很像,但由于发展阻尼和摩擦因子的存在,S形曲线到一定程度会无限逼近而不是超越人类的智商曲线。
未来学家们却假设这些因子是不存在的。他们生来就愿意做出盲目的预测,尤其当他们特别渴望这个预测成真的时候,这可能是为了实现个人抱负。
人工智能Al一词来源于哪个会议?
1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(Artificial Intelligence,简称AI)”这一概念,标志着人工智能学科的诞生